一种基于支持向量机和图像分类的二维到三维转换方法

Yudong Guan, Bo-Liang Yu, Chunli Ti, Yan Ding
{"title":"一种基于支持向量机和图像分类的二维到三维转换方法","authors":"Yudong Guan, Bo-Liang Yu, Chunli Ti, Yan Ding","doi":"10.1109/ICMLC.2014.7009097","DOIUrl":null,"url":null,"abstract":"With the development of 3D technology, converting 2D videos available into 3D videos has been an important way to gain 3D contents. In the conversion, a crucial step is how to obtain a more accurate depth map. This paper proposes a method for depth extraction based on color and geometric information of the original image. Firstly, we generate a qualitative depth map by SVM and classify image scenes into three categories. Then depending on geometric information, a geometric depth map can be generated by vanishing lines detection and gradient plane assignment. At last, we blend two depth maps to get a final depth map, which has more widely application and improves accuracy of depth better.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2D to 3D conversion method based on support vector machine and image classification\",\"authors\":\"Yudong Guan, Bo-Liang Yu, Chunli Ti, Yan Ding\",\"doi\":\"10.1109/ICMLC.2014.7009097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of 3D technology, converting 2D videos available into 3D videos has been an important way to gain 3D contents. In the conversion, a crucial step is how to obtain a more accurate depth map. This paper proposes a method for depth extraction based on color and geometric information of the original image. Firstly, we generate a qualitative depth map by SVM and classify image scenes into three categories. Then depending on geometric information, a geometric depth map can be generated by vanishing lines detection and gradient plane assignment. At last, we blend two depth maps to get a final depth map, which has more widely application and improves accuracy of depth better.\",\"PeriodicalId\":335296,\"journal\":{\"name\":\"2014 International Conference on Machine Learning and Cybernetics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2014.7009097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着三维技术的发展,将现有的二维视频转换为三维视频已成为获取三维内容的重要途径。在转换过程中,一个关键的步骤是如何获得更准确的深度图。提出了一种基于原始图像颜色和几何信息的深度提取方法。首先,利用支持向量机生成定性深度图,并将图像场景分为三类;然后根据几何信息,通过消失线检测和梯度平面分配生成几何深度图。最后将两幅深度图进行融合得到最终的深度图,应用范围更广,深度精度也得到了更好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 2D to 3D conversion method based on support vector machine and image classification
With the development of 3D technology, converting 2D videos available into 3D videos has been an important way to gain 3D contents. In the conversion, a crucial step is how to obtain a more accurate depth map. This paper proposes a method for depth extraction based on color and geometric information of the original image. Firstly, we generate a qualitative depth map by SVM and classify image scenes into three categories. Then depending on geometric information, a geometric depth map can be generated by vanishing lines detection and gradient plane assignment. At last, we blend two depth maps to get a final depth map, which has more widely application and improves accuracy of depth better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信