Giovanni Mariani, G. Palermo, C. Silvano, V. Zaccaria
{"title":"用于多核系统的特定于应用程序的运行时管理框架","authors":"Giovanni Mariani, G. Palermo, C. Silvano, V. Zaccaria","doi":"10.1109/SASP.2011.5941085","DOIUrl":null,"url":null,"abstract":"Programmable multi-core and many-core platforms increase exponentially the challenge of task mapping and scheduling, provided that enough task-parallelism does exist for each application. This problem worsens when dealing with small ecosystems such as embedded systems-on-chip. In fact, in this case, the assumption of exploiting a traditional operating system is out of context given the memory available to satisfy the run-time footprint of such a configuration.","PeriodicalId":375788,"journal":{"name":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ARTE: An Application-specific Run-Time management framework for multi-core systems\",\"authors\":\"Giovanni Mariani, G. Palermo, C. Silvano, V. Zaccaria\",\"doi\":\"10.1109/SASP.2011.5941085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmable multi-core and many-core platforms increase exponentially the challenge of task mapping and scheduling, provided that enough task-parallelism does exist for each application. This problem worsens when dealing with small ecosystems such as embedded systems-on-chip. In fact, in this case, the assumption of exploiting a traditional operating system is out of context given the memory available to satisfy the run-time footprint of such a configuration.\",\"PeriodicalId\":375788,\"journal\":{\"name\":\"2011 IEEE 9th Symposium on Application Specific Processors (SASP)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 9th Symposium on Application Specific Processors (SASP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASP.2011.5941085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2011.5941085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ARTE: An Application-specific Run-Time management framework for multi-core systems
Programmable multi-core and many-core platforms increase exponentially the challenge of task mapping and scheduling, provided that enough task-parallelism does exist for each application. This problem worsens when dealing with small ecosystems such as embedded systems-on-chip. In fact, in this case, the assumption of exploiting a traditional operating system is out of context given the memory available to satisfy the run-time footprint of such a configuration.