17.8用于±15V tft LAE传感器的90.5%效率28.7µvrms噪声双极输出高升压SC DC-DC变换器

Min-Woo Ko, Hyunki Han, Hyunsik Kim
{"title":"17.8用于±15V tft LAE传感器的90.5%效率28.7µvrms噪声双极输出高升压SC DC-DC变换器","authors":"Min-Woo Ko, Hyunki Han, Hyunsik Kim","doi":"10.1109/ISSCC42613.2021.9365935","DOIUrl":null,"url":null,"abstract":"The applications of large-area electronics (LAEs) based on thin-film transistors (TFTs) are rapidly expanding from displays to sensors. For the TFT gate drivers, high-voltage bipolar supply rails (approximately ± 15V) are required; so far, they have been typically generated from a battery $(V_{BAT})$ by employing switched-capacitor converters (SCCs) [1]. Since a high SNR is crucial for TFT-based sensors such as an under-display fingerprint sensor [2], the noise and ripple of the SCC output, which are prone to be coupled to the readout AFE, should be minimized. As a straightforward method, an LDO can be utilized as a post-regulator in series with the SCC. However, the relatively large dropout voltage $(V_{DO})$ of the LDO significantly degrades the efficiency [3]. In contrast, small VDO reduces LDO loop-gain due to the pass-transistor working in the triode region, resulting in decreased supply-ripple rejection (PSR). From the perspective of SCC, owing to its fixed voltage conversion ratio (VCR), the VDO cannot be finely regulated over a wide variation of VBAT. For fine regulation, the complexity (cost) overhead or the power loss will increase in the SC circuit. In this work, an energy-recycled optimal VDO control (EROC) technique in the SC bipolar step-up stage is proposed for higher efficiency. Also, load-current-reused (LCR) post-regulator is presented to achieve high PSR while extremely minimizing the power loss at the pass-transistor.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"17.8 A 90.5%-Efficiency 28.7µ VRMS-Noise Bipolar-Output High-Step-Up SC DC-DC Converter with Energy-Recycled Regulation and Post-Filtering for ±15V TFT-Based LAE Sensors\",\"authors\":\"Min-Woo Ko, Hyunki Han, Hyunsik Kim\",\"doi\":\"10.1109/ISSCC42613.2021.9365935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The applications of large-area electronics (LAEs) based on thin-film transistors (TFTs) are rapidly expanding from displays to sensors. For the TFT gate drivers, high-voltage bipolar supply rails (approximately ± 15V) are required; so far, they have been typically generated from a battery $(V_{BAT})$ by employing switched-capacitor converters (SCCs) [1]. Since a high SNR is crucial for TFT-based sensors such as an under-display fingerprint sensor [2], the noise and ripple of the SCC output, which are prone to be coupled to the readout AFE, should be minimized. As a straightforward method, an LDO can be utilized as a post-regulator in series with the SCC. However, the relatively large dropout voltage $(V_{DO})$ of the LDO significantly degrades the efficiency [3]. In contrast, small VDO reduces LDO loop-gain due to the pass-transistor working in the triode region, resulting in decreased supply-ripple rejection (PSR). From the perspective of SCC, owing to its fixed voltage conversion ratio (VCR), the VDO cannot be finely regulated over a wide variation of VBAT. For fine regulation, the complexity (cost) overhead or the power loss will increase in the SC circuit. In this work, an energy-recycled optimal VDO control (EROC) technique in the SC bipolar step-up stage is proposed for higher efficiency. Also, load-current-reused (LCR) post-regulator is presented to achieve high PSR while extremely minimizing the power loss at the pass-transistor.\",\"PeriodicalId\":371093,\"journal\":{\"name\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42613.2021.9365935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于薄膜晶体管(TFTs)的大面积电子学(LAEs)的应用正迅速从显示器扩展到传感器。对于TFT栅极驱动器,需要高压双极供电轨(大约±15V);到目前为止,它们通常是通过使用开关电容器转换器(SCCs)从电池$(V_{BAT})$产生的[1]。由于高信噪比对于基于tft的传感器(如屏下指纹传感器)至关重要[2],因此应尽量减少易于与读出AFE耦合的SCC输出的噪声和纹波。作为一种简单的方法,LDO可以用作与SCC串联的后稳压器。然而,LDO相对较大的压降电压$(V_{DO})$会显著降低效率[3]。相比之下,由于通管工作在三极管区域,小的VDO降低了LDO环路增益,从而降低了电源纹波抑制(PSR)。从SCC的角度来看,由于其固定的电压转换比(VCR), VDO不能在VBAT的大变化下进行精细调节。对于精细调节,SC电路的复杂性(成本)开销或功率损耗将会增加。在本研究中,提出了一种能量回收的最佳VDO控制(EROC)技术,以提高SC双极升压阶段的效率。此外,负载电流复用(LCR)后稳压器提出了实现高PSR,同时极大地减少了在通管的功率损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
17.8 A 90.5%-Efficiency 28.7µ VRMS-Noise Bipolar-Output High-Step-Up SC DC-DC Converter with Energy-Recycled Regulation and Post-Filtering for ±15V TFT-Based LAE Sensors
The applications of large-area electronics (LAEs) based on thin-film transistors (TFTs) are rapidly expanding from displays to sensors. For the TFT gate drivers, high-voltage bipolar supply rails (approximately ± 15V) are required; so far, they have been typically generated from a battery $(V_{BAT})$ by employing switched-capacitor converters (SCCs) [1]. Since a high SNR is crucial for TFT-based sensors such as an under-display fingerprint sensor [2], the noise and ripple of the SCC output, which are prone to be coupled to the readout AFE, should be minimized. As a straightforward method, an LDO can be utilized as a post-regulator in series with the SCC. However, the relatively large dropout voltage $(V_{DO})$ of the LDO significantly degrades the efficiency [3]. In contrast, small VDO reduces LDO loop-gain due to the pass-transistor working in the triode region, resulting in decreased supply-ripple rejection (PSR). From the perspective of SCC, owing to its fixed voltage conversion ratio (VCR), the VDO cannot be finely regulated over a wide variation of VBAT. For fine regulation, the complexity (cost) overhead or the power loss will increase in the SC circuit. In this work, an energy-recycled optimal VDO control (EROC) technique in the SC bipolar step-up stage is proposed for higher efficiency. Also, load-current-reused (LCR) post-regulator is presented to achieve high PSR while extremely minimizing the power loss at the pass-transistor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信