{"title":"微网HVAC系统负荷管理与热电联产电厂优化控制","authors":"Haijie Qi, H. Yue, Jiangfeng Zhang, Steve Lo","doi":"10.1109/ICCA.2019.8899972","DOIUrl":null,"url":null,"abstract":"Combined heat and power (CHP) is a typical community owned distributed generation solution in microgrid development. In this work, the ratio between the electricity output and the thermal output is controlled, along with the demand side load management, so as to minimize the overall microgrid operational cost. A model is established for the energy cost of a smart building system, which includes factors such as the real time electricity pricing, the capacity and constraints within CHP operation, the operating condition of heating, ventilation, and air - conditioning (HVAC), and the indoors air temperature of the smart building. Efficient CHP operation and HVAC load management under demand response (DR) are determined through optimization. A case study is carried out to examine the effectiveness of the proposed strategy.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Control of CHP Plant Integrated with Load Management on HVAC System in Microgrid\",\"authors\":\"Haijie Qi, H. Yue, Jiangfeng Zhang, Steve Lo\",\"doi\":\"10.1109/ICCA.2019.8899972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined heat and power (CHP) is a typical community owned distributed generation solution in microgrid development. In this work, the ratio between the electricity output and the thermal output is controlled, along with the demand side load management, so as to minimize the overall microgrid operational cost. A model is established for the energy cost of a smart building system, which includes factors such as the real time electricity pricing, the capacity and constraints within CHP operation, the operating condition of heating, ventilation, and air - conditioning (HVAC), and the indoors air temperature of the smart building. Efficient CHP operation and HVAC load management under demand response (DR) are determined through optimization. A case study is carried out to examine the effectiveness of the proposed strategy.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Control of CHP Plant Integrated with Load Management on HVAC System in Microgrid
Combined heat and power (CHP) is a typical community owned distributed generation solution in microgrid development. In this work, the ratio between the electricity output and the thermal output is controlled, along with the demand side load management, so as to minimize the overall microgrid operational cost. A model is established for the energy cost of a smart building system, which includes factors such as the real time electricity pricing, the capacity and constraints within CHP operation, the operating condition of heating, ventilation, and air - conditioning (HVAC), and the indoors air temperature of the smart building. Efficient CHP operation and HVAC load management under demand response (DR) are determined through optimization. A case study is carried out to examine the effectiveness of the proposed strategy.