直积的二元子群

M. Bridson
{"title":"直积的二元子群","authors":"M. Bridson","doi":"10.4171/lem/1057","DOIUrl":null,"url":null,"abstract":"We explore an elementary construction that produces finitely presented groups with diverse homological finiteness properties -- the {\\em binary subgroups}, $B(\\Sigma,\\mu)<G_1\\times\\dots\\times G_m$. These full subdirect products require strikingly few generators. If each $G_i$ is finitely presented, $B(\\Sigma,\\mu)$ is finitely presented. When the $G_i$ are non-abelian limit groups (e.g. free or surface groups), the $B(\\Sigma,\\mu)$ provide new examples of finitely presented, residually-free groups that do not have finite classifying spaces and are not of Stallings-Bieri type. These examples settle a question of Minasyan relating different notions of rank for residually-free groups. Using binary subgroups, we prove that if $G_1,\\dots,G_m$ are perfect groups, each requiring at most $r$ generators, then $G_1\\times\\dots\\times G_m$ requires at most $r \\lfloor \\log_2 m+1 \\rfloor$ generators.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary subgroups of direct products\",\"authors\":\"M. Bridson\",\"doi\":\"10.4171/lem/1057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore an elementary construction that produces finitely presented groups with diverse homological finiteness properties -- the {\\\\em binary subgroups}, $B(\\\\Sigma,\\\\mu)<G_1\\\\times\\\\dots\\\\times G_m$. These full subdirect products require strikingly few generators. If each $G_i$ is finitely presented, $B(\\\\Sigma,\\\\mu)$ is finitely presented. When the $G_i$ are non-abelian limit groups (e.g. free or surface groups), the $B(\\\\Sigma,\\\\mu)$ provide new examples of finitely presented, residually-free groups that do not have finite classifying spaces and are not of Stallings-Bieri type. These examples settle a question of Minasyan relating different notions of rank for residually-free groups. Using binary subgroups, we prove that if $G_1,\\\\dots,G_m$ are perfect groups, each requiring at most $r$ generators, then $G_1\\\\times\\\\dots\\\\times G_m$ requires at most $r \\\\lfloor \\\\log_2 m+1 \\\\rfloor$ generators.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了一种产生具有多种同调有限性的有限表示群的初等构造——{\em二元子群},$B(\Sigma,\mu)本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Binary subgroups of direct products
We explore an elementary construction that produces finitely presented groups with diverse homological finiteness properties -- the {\em binary subgroups}, $B(\Sigma,\mu)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信