电机用软磁复合材料的均匀化及涡流损耗近似

S. Singh, J. Vesa, J. Gyselinck, P. Rasilo, Y. Mollet
{"title":"电机用软磁复合材料的均匀化及涡流损耗近似","authors":"S. Singh, J. Vesa, J. Gyselinck, P. Rasilo, Y. Mollet","doi":"10.1049/icp.2021.1058","DOIUrl":null,"url":null,"abstract":"This paper investigates the soft magnetic composite (SMC) material consisting of irregular grains with induced eddy currents using finite element analysis (FEA). SMC material is made up of iron grains separated by insulation gap. The geometry of the material has been determined using an algorithm based approach and an image based approach.The effective reluctivity has been determined using two homogenization techniques. The first homogenization technique makes use of an energy formulation. The eddy current effects are evaluated taking into consideration the fill factor of the 2-D SMC material.A low frequency approximation is realized for the homogenized material. In the second technique, non-linear properties are determined using the time-stepping technique. A method has been proposed in FEA for directly including an analytical eddy current loss formula for rotating electrical machines with SMC material cores. The eddy current loss and torque have been determined for the radial flux permanent magnet synchronous machine (PMSM) having an SMC stator core and the results are then compared with the laminated stator core machine.","PeriodicalId":188371,"journal":{"name":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization and Eddy Current Loss Approximation of Soft Magnetic Composite Material for Electrical Machines\",\"authors\":\"S. Singh, J. Vesa, J. Gyselinck, P. Rasilo, Y. Mollet\",\"doi\":\"10.1049/icp.2021.1058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the soft magnetic composite (SMC) material consisting of irregular grains with induced eddy currents using finite element analysis (FEA). SMC material is made up of iron grains separated by insulation gap. The geometry of the material has been determined using an algorithm based approach and an image based approach.The effective reluctivity has been determined using two homogenization techniques. The first homogenization technique makes use of an energy formulation. The eddy current effects are evaluated taking into consideration the fill factor of the 2-D SMC material.A low frequency approximation is realized for the homogenized material. In the second technique, non-linear properties are determined using the time-stepping technique. A method has been proposed in FEA for directly including an analytical eddy current loss formula for rotating electrical machines with SMC material cores. The eddy current loss and torque have been determined for the radial flux permanent magnet synchronous machine (PMSM) having an SMC stator core and the results are then compared with the laminated stator core machine.\",\"PeriodicalId\":188371,\"journal\":{\"name\":\"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.1058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用有限元分析的方法研究了具有感应涡流的不规则颗粒组成的软磁复合材料。SMC材料由由绝缘间隙分隔的铁粒组成。使用基于算法的方法和基于图像的方法确定了材料的几何形状。用两种均质技术测定了有效阻率。第一种均质化技术利用能量公式。考虑二维SMC材料的填充系数,对涡流效应进行了评价。对均质材料实现了低频近似。在第二种技术中,使用时间步进技术确定非线性特性。提出了一种在有限元分析中直接包含SMC材料铁芯旋转电机涡流损耗解析公式的方法。测定了具有SMC定子铁心的径向磁通永磁同步电机(PMSM)的涡流损耗和转矩,并与层压定子铁心电机进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization and Eddy Current Loss Approximation of Soft Magnetic Composite Material for Electrical Machines
This paper investigates the soft magnetic composite (SMC) material consisting of irregular grains with induced eddy currents using finite element analysis (FEA). SMC material is made up of iron grains separated by insulation gap. The geometry of the material has been determined using an algorithm based approach and an image based approach.The effective reluctivity has been determined using two homogenization techniques. The first homogenization technique makes use of an energy formulation. The eddy current effects are evaluated taking into consideration the fill factor of the 2-D SMC material.A low frequency approximation is realized for the homogenized material. In the second technique, non-linear properties are determined using the time-stepping technique. A method has been proposed in FEA for directly including an analytical eddy current loss formula for rotating electrical machines with SMC material cores. The eddy current loss and torque have been determined for the radial flux permanent magnet synchronous machine (PMSM) having an SMC stator core and the results are then compared with the laminated stator core machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信