张量的双多数学习

Chia-Lun Lee, Shun-Wen Hsiao, Fang Yu
{"title":"张量的双多数学习","authors":"Chia-Lun Lee, Shun-Wen Hsiao, Fang Yu","doi":"10.1109/BigDataCongress.2018.00038","DOIUrl":null,"url":null,"abstract":"In addition to the mislabeled training data that could interfere the effectiveness of learning, in a dynamic environment where the majority pattern changes, it is also difficult to perform training. We propose an efficient bipartite majority learning algorithm (BML) for categorical data classification with tensors on a single hidden layer feedforward neural network (SLFN). We adopt the resistant learning approach to avoid significant impact from data anomalies and iteratively conduct bipartite classification for majorities afterward. The bipartite algorithm can reduce the training time significantly while keeping competitive accuracy compared to previous resistant learning algorithms.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biparti Majority Learning with Tensors\",\"authors\":\"Chia-Lun Lee, Shun-Wen Hsiao, Fang Yu\",\"doi\":\"10.1109/BigDataCongress.2018.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addition to the mislabeled training data that could interfere the effectiveness of learning, in a dynamic environment where the majority pattern changes, it is also difficult to perform training. We propose an efficient bipartite majority learning algorithm (BML) for categorical data classification with tensors on a single hidden layer feedforward neural network (SLFN). We adopt the resistant learning approach to avoid significant impact from data anomalies and iteratively conduct bipartite classification for majorities afterward. The bipartite algorithm can reduce the training time significantly while keeping competitive accuracy compared to previous resistant learning algorithms.\",\"PeriodicalId\":177250,\"journal\":{\"name\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2018.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

除了错误标记的训练数据可能会干扰学习的有效性外,在大多数模式变化的动态环境中,执行训练也很困难。在单隐层前馈神经网络(SLFN)上提出了一种有效的二部多数学习算法(BML),用于具有张量的分类数据分类。我们采用抵抗学习的方法来避免数据异常的显著影响,然后迭代地对多数进行二部分分类。与已有的抵抗学习算法相比,二部算法可以在保持竞争精度的同时显著减少训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biparti Majority Learning with Tensors
In addition to the mislabeled training data that could interfere the effectiveness of learning, in a dynamic environment where the majority pattern changes, it is also difficult to perform training. We propose an efficient bipartite majority learning algorithm (BML) for categorical data classification with tensors on a single hidden layer feedforward neural network (SLFN). We adopt the resistant learning approach to avoid significant impact from data anomalies and iteratively conduct bipartite classification for majorities afterward. The bipartite algorithm can reduce the training time significantly while keeping competitive accuracy compared to previous resistant learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信