基于非线性特征提取和SOM分类的音乐视频情绪状态识别

S. Hatamikia, A. Nasrabadi
{"title":"基于非线性特征提取和SOM分类的音乐视频情绪状态识别","authors":"S. Hatamikia, A. Nasrabadi","doi":"10.1109/ICBME.2014.7043946","DOIUrl":null,"url":null,"abstract":"This research aims at investigating the relationship between Electroencephalogram (EEG) signals and human emotional states. A subject-independent emotion recognition system is proposed using EEG signals collected during emotional audio-visual inductions to classify different classes of continuous valence-arousal model. First, four feature extraction methods based on Approximate Entropy, Spectral entropy, Katz's fractal dimension and Petrosian's fractal dimension were used; then, a two-stage feature selection method based on Dunn index and Sequential forward feature selection algorithm (SFS) algorithm was used to select the most informative feature subsets. Self-Organization Map (SOM) classifier was used to classify different emotional classes with the use of 5-fold cross-validation. The best results were achieved using combination of all features by average accuracies of %68.92 and %71.25 for two classes of valence and arousal, respectively. Furthermore, a hierarchical model which was constructed of two classifiers was used for classifying 4 emotional classes of valence and arousal levels and the average accuracy of %55.15 was achieved.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification\",\"authors\":\"S. Hatamikia, A. Nasrabadi\",\"doi\":\"10.1109/ICBME.2014.7043946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims at investigating the relationship between Electroencephalogram (EEG) signals and human emotional states. A subject-independent emotion recognition system is proposed using EEG signals collected during emotional audio-visual inductions to classify different classes of continuous valence-arousal model. First, four feature extraction methods based on Approximate Entropy, Spectral entropy, Katz's fractal dimension and Petrosian's fractal dimension were used; then, a two-stage feature selection method based on Dunn index and Sequential forward feature selection algorithm (SFS) algorithm was used to select the most informative feature subsets. Self-Organization Map (SOM) classifier was used to classify different emotional classes with the use of 5-fold cross-validation. The best results were achieved using combination of all features by average accuracies of %68.92 and %71.25 for two classes of valence and arousal, respectively. Furthermore, a hierarchical model which was constructed of two classifiers was used for classifying 4 emotional classes of valence and arousal levels and the average accuracy of %55.15 was achieved.\",\"PeriodicalId\":434822,\"journal\":{\"name\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2014.7043946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本研究旨在探讨脑电图(EEG)信号与人类情绪状态之间的关系。提出了一种独立于主体的情绪识别系统,利用情绪视听诱导过程中采集的脑电图信号对不同类型的连续价-觉醒模型进行分类。首先,采用基于近似熵、谱熵、Katz分形维数和Petrosian分形维数的四种特征提取方法;然后,采用基于Dunn索引和顺序前向特征选择算法(SFS)的两阶段特征选择方法,选择信息量最大的特征子集;采用自组织映射(SOM)分类器对不同的情绪类别进行分类,并采用5倍交叉验证。对效价和唤醒两类特征的平均准确率分别为%68.92和%71.25。采用两个分类器构建的层次模型对4类情绪的效价和唤醒水平进行分类,平均准确率为%55.15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification
This research aims at investigating the relationship between Electroencephalogram (EEG) signals and human emotional states. A subject-independent emotion recognition system is proposed using EEG signals collected during emotional audio-visual inductions to classify different classes of continuous valence-arousal model. First, four feature extraction methods based on Approximate Entropy, Spectral entropy, Katz's fractal dimension and Petrosian's fractal dimension were used; then, a two-stage feature selection method based on Dunn index and Sequential forward feature selection algorithm (SFS) algorithm was used to select the most informative feature subsets. Self-Organization Map (SOM) classifier was used to classify different emotional classes with the use of 5-fold cross-validation. The best results were achieved using combination of all features by average accuracies of %68.92 and %71.25 for two classes of valence and arousal, respectively. Furthermore, a hierarchical model which was constructed of two classifiers was used for classifying 4 emotional classes of valence and arousal levels and the average accuracy of %55.15 was achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信