Puneet Kumar, S. Salunkhe, R. Shanmugam, B. K. Bhuyan, A. Dahiya, Yuvaraj N.
{"title":"凯夫拉环氧复合材料AWJM中切口性能和分层长度预测模型的建立及优化","authors":"Puneet Kumar, S. Salunkhe, R. Shanmugam, B. K. Bhuyan, A. Dahiya, Yuvaraj N.","doi":"10.1115/imece2022-96214","DOIUrl":null,"url":null,"abstract":"\n Kevlar epoxy composite is a strong and light weight fiber reinforced polymer (FRP) composite material. It has wide applications in various domains such as aerospace, marine, automotive, military, and sports’ goods (Campbell, 2010). This paper describes the research work involved in studying the influence of process parameters on surface roughness and kerf taper and development of predicative model for the response in abrasive water jet machining (AWJM) of Kevlar epoxy composite. Design of experiments has been performed using response surface methodology and then based on experimental analysis predictive models have been developed to estimate surface roughness and kerf taper. In the present work, four process parameters namely stand-off distance, water pressure, traverse rate and abrasive mass flow rate are considered to study their influence on response characteristics. Experiments are performed according to response surface methodology design. The regression models have been developed to predict surface roughness, kerf taper and maximum delamination length in AWJM of Kevlar epoxy composite. Optimization of process parameters is performed to minimize surface roughness, kerf taper and delamination. Desirability function approach is used for optimization.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Predictive Model and Optimization for the Kerf Properties and Delamination Length in AWJM of Kevlar Epoxy Composite\",\"authors\":\"Puneet Kumar, S. Salunkhe, R. Shanmugam, B. K. Bhuyan, A. Dahiya, Yuvaraj N.\",\"doi\":\"10.1115/imece2022-96214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Kevlar epoxy composite is a strong and light weight fiber reinforced polymer (FRP) composite material. It has wide applications in various domains such as aerospace, marine, automotive, military, and sports’ goods (Campbell, 2010). This paper describes the research work involved in studying the influence of process parameters on surface roughness and kerf taper and development of predicative model for the response in abrasive water jet machining (AWJM) of Kevlar epoxy composite. Design of experiments has been performed using response surface methodology and then based on experimental analysis predictive models have been developed to estimate surface roughness and kerf taper. In the present work, four process parameters namely stand-off distance, water pressure, traverse rate and abrasive mass flow rate are considered to study their influence on response characteristics. Experiments are performed according to response surface methodology design. The regression models have been developed to predict surface roughness, kerf taper and maximum delamination length in AWJM of Kevlar epoxy composite. Optimization of process parameters is performed to minimize surface roughness, kerf taper and delamination. Desirability function approach is used for optimization.\",\"PeriodicalId\":146276,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-96214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Predictive Model and Optimization for the Kerf Properties and Delamination Length in AWJM of Kevlar Epoxy Composite
Kevlar epoxy composite is a strong and light weight fiber reinforced polymer (FRP) composite material. It has wide applications in various domains such as aerospace, marine, automotive, military, and sports’ goods (Campbell, 2010). This paper describes the research work involved in studying the influence of process parameters on surface roughness and kerf taper and development of predicative model for the response in abrasive water jet machining (AWJM) of Kevlar epoxy composite. Design of experiments has been performed using response surface methodology and then based on experimental analysis predictive models have been developed to estimate surface roughness and kerf taper. In the present work, four process parameters namely stand-off distance, water pressure, traverse rate and abrasive mass flow rate are considered to study their influence on response characteristics. Experiments are performed according to response surface methodology design. The regression models have been developed to predict surface roughness, kerf taper and maximum delamination length in AWJM of Kevlar epoxy composite. Optimization of process parameters is performed to minimize surface roughness, kerf taper and delamination. Desirability function approach is used for optimization.