基于广义回归神经网络的DS/CDMA系统自适应多用户检测

Mohsen Rajabpour, F. Razzazi, H. Bakhshi
{"title":"基于广义回归神经网络的DS/CDMA系统自适应多用户检测","authors":"Mohsen Rajabpour, F. Razzazi, H. Bakhshi","doi":"10.1109/NOMS.2012.6211931","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are extremely used for detection of spread-spectrum signals in multiple-access environments. In this paper we suggest the use of generalized regression neural networks (GRNN) on multiuser detectors in DS/CDMA systems. The network is trained by applying the estimated joint probability density function. After training, the network can obtain the required timing without knowing the signature waveforms and the received signal amplitudes. The simulation results demonstrate that the proposed receiver has higher performance in comparison to detectors which have more knowledge of system parameters.","PeriodicalId":364494,"journal":{"name":"2012 IEEE Network Operations and Management Symposium","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive multiuser detection in DS/CDMA systems using generalized regression neural network\",\"authors\":\"Mohsen Rajabpour, F. Razzazi, H. Bakhshi\",\"doi\":\"10.1109/NOMS.2012.6211931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks are extremely used for detection of spread-spectrum signals in multiple-access environments. In this paper we suggest the use of generalized regression neural networks (GRNN) on multiuser detectors in DS/CDMA systems. The network is trained by applying the estimated joint probability density function. After training, the network can obtain the required timing without knowing the signature waveforms and the received signal amplitudes. The simulation results demonstrate that the proposed receiver has higher performance in comparison to detectors which have more knowledge of system parameters.\",\"PeriodicalId\":364494,\"journal\":{\"name\":\"2012 IEEE Network Operations and Management Symposium\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2012.6211931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2012.6211931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工神经网络在多址环境中广泛应用于扩频信号的检测。本文提出将广义回归神经网络(GRNN)应用于DS/CDMA系统中的多用户检测器。利用估计的联合概率密度函数对网络进行训练。经过训练,网络可以在不知道特征波形和接收信号幅值的情况下获得所需的时序。仿真结果表明,与了解系统参数的检测器相比,该接收机具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive multiuser detection in DS/CDMA systems using generalized regression neural network
Artificial neural networks are extremely used for detection of spread-spectrum signals in multiple-access environments. In this paper we suggest the use of generalized regression neural networks (GRNN) on multiuser detectors in DS/CDMA systems. The network is trained by applying the estimated joint probability density function. After training, the network can obtain the required timing without knowing the signature waveforms and the received signal amplitudes. The simulation results demonstrate that the proposed receiver has higher performance in comparison to detectors which have more knowledge of system parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信