稳态不可压缩化学反应流的非线性迭代逼近

P. A. Gazca-Orozco, Pascal Heid, E. Süli
{"title":"稳态不可压缩化学反应流的非线性迭代逼近","authors":"P. A. Gazca-Orozco, Pascal Heid, E. Süli","doi":"10.5802/crmeca.127","DOIUrl":null,"url":null,"abstract":". We consider a system of nonlinear partial differential equations modelling steady flow of an incompressible chemically reacting non-Newtonian fluid, whose viscosity depends on both the shear-rate and the concentration; in particular, the viscosity is of power-law type, with a power-law index that depends on the concentration. We prove that the weak solution, whose existence was already established in the literature, is unique, given some strengthened assumptions on the diffusive flux and the stress tensor, for smallenoughdata.Wethenshowthattheuniquenessresultcanbeappliedtoamodeldescribingthesynovial fluid. Furthermore, in the latter context, we prove the convergence of a nonlinear iteration scheme; the proposed scheme is remarkably simple and it amounts to solving a linear Stokes–Laplace system at each step. Numerical experiments are performed, which confirm the theoretical findings.","PeriodicalId":183934,"journal":{"name":"Comptes Rendus. Mécanique","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear iterative approximation of steady incompressible chemically reacting flows\",\"authors\":\"P. A. Gazca-Orozco, Pascal Heid, E. Süli\",\"doi\":\"10.5802/crmeca.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider a system of nonlinear partial differential equations modelling steady flow of an incompressible chemically reacting non-Newtonian fluid, whose viscosity depends on both the shear-rate and the concentration; in particular, the viscosity is of power-law type, with a power-law index that depends on the concentration. We prove that the weak solution, whose existence was already established in the literature, is unique, given some strengthened assumptions on the diffusive flux and the stress tensor, for smallenoughdata.Wethenshowthattheuniquenessresultcanbeappliedtoamodeldescribingthesynovial fluid. Furthermore, in the latter context, we prove the convergence of a nonlinear iteration scheme; the proposed scheme is remarkably simple and it amounts to solving a linear Stokes–Laplace system at each step. Numerical experiments are performed, which confirm the theoretical findings.\",\"PeriodicalId\":183934,\"journal\":{\"name\":\"Comptes Rendus. Mécanique\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus. Mécanique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmeca.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus. Mécanique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmeca.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 我们考虑了一个非线性偏微分方程组,它模拟了不可压缩化学反应的非牛顿流体的稳定流动,其粘度既取决于剪切速率,也取决于浓度;特别是,粘度是幂律型的,幂律指数取决于浓度。对于足够小的数据,给出了一些关于扩散通量和应力张量的强化假设,证明了在文献中已经存在的弱解是唯一的。Wethenshowthattheuniquenessresultcanbeappliedtoamodeldescribingthesynovial液体。进一步,在后一种情况下,我们证明了非线性迭代格式的收敛性;所提出的方案非常简单,它相当于在每一步求解一个线性斯托克斯-拉普拉斯系统。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear iterative approximation of steady incompressible chemically reacting flows
. We consider a system of nonlinear partial differential equations modelling steady flow of an incompressible chemically reacting non-Newtonian fluid, whose viscosity depends on both the shear-rate and the concentration; in particular, the viscosity is of power-law type, with a power-law index that depends on the concentration. We prove that the weak solution, whose existence was already established in the literature, is unique, given some strengthened assumptions on the diffusive flux and the stress tensor, for smallenoughdata.Wethenshowthattheuniquenessresultcanbeappliedtoamodeldescribingthesynovial fluid. Furthermore, in the latter context, we prove the convergence of a nonlinear iteration scheme; the proposed scheme is remarkably simple and it amounts to solving a linear Stokes–Laplace system at each step. Numerical experiments are performed, which confirm the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信