基于有限元和神经网络的海上钢立管波浪载荷疲劳损伤模型预测——以尼日利亚Forcados offshore为例

Usen Inemesit, Jasper Ahamefula Agbakwuru
{"title":"基于有限元和神经网络的海上钢立管波浪载荷疲劳损伤模型预测——以尼日利亚Forcados offshore为例","authors":"Usen Inemesit, Jasper Ahamefula Agbakwuru","doi":"10.53430/ijeru.2023.4.1.0014","DOIUrl":null,"url":null,"abstract":"This study aims at providing a model prediction technique for the fatigue life of offshore steel risers using a hybrid of finite element analysis and the artificial neural network (FEA-ANN) model. A 200 days’ environmental load from Forcados sea state in West Africa offshore was used in training the FEA-ANN model to predict fatigue. The prediction result showed that the mean square error (MSE) was 0.3329 and the analysis from the regression was 0.9999. The result from the training showed a high performance and the regression analysis of the model was seen to be good.","PeriodicalId":423246,"journal":{"name":"International Journal of Engineering Research Updates","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model prediction of fatigue damage on offshore steel risers due to wave loading using FEA and ANN: A case of Forcados Offshore, Nigeria\",\"authors\":\"Usen Inemesit, Jasper Ahamefula Agbakwuru\",\"doi\":\"10.53430/ijeru.2023.4.1.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims at providing a model prediction technique for the fatigue life of offshore steel risers using a hybrid of finite element analysis and the artificial neural network (FEA-ANN) model. A 200 days’ environmental load from Forcados sea state in West Africa offshore was used in training the FEA-ANN model to predict fatigue. The prediction result showed that the mean square error (MSE) was 0.3329 and the analysis from the regression was 0.9999. The result from the training showed a high performance and the regression analysis of the model was seen to be good.\",\"PeriodicalId\":423246,\"journal\":{\"name\":\"International Journal of Engineering Research Updates\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research Updates\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53430/ijeru.2023.4.1.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research Updates","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53430/ijeru.2023.4.1.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用有限元分析与人工神经网络(FEA-ANN)模型相结合的方法,对海洋用钢立管的疲劳寿命进行模型预测。西非近海Forcados海况200天的环境负荷被用于训练FEA-ANN模型来预测疲劳。预测结果表明,均方误差(MSE)为0.3329,回归分析结果为0.9999。训练结果表明,模型的回归分析效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model prediction of fatigue damage on offshore steel risers due to wave loading using FEA and ANN: A case of Forcados Offshore, Nigeria
This study aims at providing a model prediction technique for the fatigue life of offshore steel risers using a hybrid of finite element analysis and the artificial neural network (FEA-ANN) model. A 200 days’ environmental load from Forcados sea state in West Africa offshore was used in training the FEA-ANN model to predict fatigue. The prediction result showed that the mean square error (MSE) was 0.3329 and the analysis from the regression was 0.9999. The result from the training showed a high performance and the regression analysis of the model was seen to be good.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信