利用遗传算法求解动态场景下的多旅行商问题

O. N. A. Sanchez, M. Rosero
{"title":"利用遗传算法求解动态场景下的多旅行商问题","authors":"O. N. A. Sanchez, M. Rosero","doi":"10.1109/ICAR.2017.8023519","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation of a technique to solve the Multi-Travel Salesman Problem (MTSP) when applied to mobile robots in dynamic scenarios. Given that the MTSP is an NP-Complete problem, we used genetic algorithms to solve it efficiently. Once we obtained a theoretical solution for the MTSP, we applied it in simulated and experimental scenarios. In addition, we implemented path planning algorithms to generate the path for each of the robots, and evasion algorithms to manage dynamic scenarios. With those main challenges clear, we tested these implementations in simulation and laboratory environments in order to measure the quality of the proposed solution.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Path planning and following using genetic algorithms to solve the multi-travel salesman problem in dynamic scenarios\",\"authors\":\"O. N. A. Sanchez, M. Rosero\",\"doi\":\"10.1109/ICAR.2017.8023519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an implementation of a technique to solve the Multi-Travel Salesman Problem (MTSP) when applied to mobile robots in dynamic scenarios. Given that the MTSP is an NP-Complete problem, we used genetic algorithms to solve it efficiently. Once we obtained a theoretical solution for the MTSP, we applied it in simulated and experimental scenarios. In addition, we implemented path planning algorithms to generate the path for each of the robots, and evasion algorithms to manage dynamic scenarios. With those main challenges clear, we tested these implementations in simulation and laboratory environments in order to measure the quality of the proposed solution.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种求解动态场景下移动机器人多旅行推销员问题的方法。考虑到MTSP是一个np完全问题,我们使用遗传算法来有效地求解它。一旦我们获得了MTSP的理论解,我们将其应用于模拟和实验场景。此外,我们还实现了路径规划算法来生成每个机器人的路径,以及规避算法来管理动态场景。明确了这些主要挑战后,我们在模拟和实验室环境中测试了这些实现,以度量所建议解决方案的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path planning and following using genetic algorithms to solve the multi-travel salesman problem in dynamic scenarios
This paper presents an implementation of a technique to solve the Multi-Travel Salesman Problem (MTSP) when applied to mobile robots in dynamic scenarios. Given that the MTSP is an NP-Complete problem, we used genetic algorithms to solve it efficiently. Once we obtained a theoretical solution for the MTSP, we applied it in simulated and experimental scenarios. In addition, we implemented path planning algorithms to generate the path for each of the robots, and evasion algorithms to manage dynamic scenarios. With those main challenges clear, we tested these implementations in simulation and laboratory environments in order to measure the quality of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信