TDOA问题中TOA的最优估计

J. Sorensen
{"title":"TDOA问题中TOA的最优估计","authors":"J. Sorensen","doi":"10.1109/AusCTW.2013.6510046","DOIUrl":null,"url":null,"abstract":"In the time difference of arrival (TDOA) problem, the unknown location of an emitter is estimated using a set of TDOA estimates. In this paper, a closed-form solution for a nominal TOA in the TDOA problem is presented for the case of three or four receivers that under certain conditions results in location estimates that are optimal in the least-square error sense.","PeriodicalId":177106,"journal":{"name":"2013 Australian Communications Theory Workshop (AusCTW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal estimation of TOA in the TDOA problem\",\"authors\":\"J. Sorensen\",\"doi\":\"10.1109/AusCTW.2013.6510046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the time difference of arrival (TDOA) problem, the unknown location of an emitter is estimated using a set of TDOA estimates. In this paper, a closed-form solution for a nominal TOA in the TDOA problem is presented for the case of three or four receivers that under certain conditions results in location estimates that are optimal in the least-square error sense.\",\"PeriodicalId\":177106,\"journal\":{\"name\":\"2013 Australian Communications Theory Workshop (AusCTW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Australian Communications Theory Workshop (AusCTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AusCTW.2013.6510046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Communications Theory Workshop (AusCTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AusCTW.2013.6510046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在到达时间差(TDOA)问题中,利用一组TDOA估计来估计未知辐射源的位置。本文针对三个或四个接收机在一定条件下的最小二乘误差意义下的最优位置估计,给出了TDOA问题中名义TOA的封闭解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal estimation of TOA in the TDOA problem
In the time difference of arrival (TDOA) problem, the unknown location of an emitter is estimated using a set of TDOA estimates. In this paper, a closed-form solution for a nominal TOA in the TDOA problem is presented for the case of three or four receivers that under certain conditions results in location estimates that are optimal in the least-square error sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信