{"title":"为自动算法选择优化的任务不可知数据集表示","authors":"Noy Cohen-Shapira, L. Rokach","doi":"10.1109/ICDM51629.2021.00018","DOIUrl":null,"url":null,"abstract":"With the growing number of machine learning (ML) algorithms, the selection of the top-performing algorithms for a given dataset, task, and evaluation measure is known to be a challenging task. The human expertise required for this task has fueled the demand for automatic solutions. Meta-learning is a popular approach for automatic algorithm selection based on dataset characterization. Existing meta-learning methods often represent the datasets using predefined features and thus cannot be generalized for various ML tasks, or alternatively, learn their representations in a supervised fashion, and thus cannot address unsupervised tasks. In this study, we first propose a novel learning-based task-agnostic method for dataset representation. Second, we present TRIO, a meta-learning approach based on the proposed dataset representation, which is capable of accurately recommending top-performing algorithms for unseen datasets. TRIO first learns graphical representations from the datasets and then utilizes a graph convolutional neural network technique to extract their latent representations. An extensive evaluation on 337 datasets and 195 ML algorithms demonstrates the effectiveness of our approach over state-of-the-art methods for algorithm selection for both supervised (classification and regression) and unsupervised (clustering) tasks.","PeriodicalId":320970,"journal":{"name":"2021 IEEE International Conference on Data Mining (ICDM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"TRIO: Task-agnostic dataset representation optimized for automatic algorithm selection\",\"authors\":\"Noy Cohen-Shapira, L. Rokach\",\"doi\":\"10.1109/ICDM51629.2021.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing number of machine learning (ML) algorithms, the selection of the top-performing algorithms for a given dataset, task, and evaluation measure is known to be a challenging task. The human expertise required for this task has fueled the demand for automatic solutions. Meta-learning is a popular approach for automatic algorithm selection based on dataset characterization. Existing meta-learning methods often represent the datasets using predefined features and thus cannot be generalized for various ML tasks, or alternatively, learn their representations in a supervised fashion, and thus cannot address unsupervised tasks. In this study, we first propose a novel learning-based task-agnostic method for dataset representation. Second, we present TRIO, a meta-learning approach based on the proposed dataset representation, which is capable of accurately recommending top-performing algorithms for unseen datasets. TRIO first learns graphical representations from the datasets and then utilizes a graph convolutional neural network technique to extract their latent representations. An extensive evaluation on 337 datasets and 195 ML algorithms demonstrates the effectiveness of our approach over state-of-the-art methods for algorithm selection for both supervised (classification and regression) and unsupervised (clustering) tasks.\",\"PeriodicalId\":320970,\"journal\":{\"name\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM51629.2021.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM51629.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TRIO: Task-agnostic dataset representation optimized for automatic algorithm selection
With the growing number of machine learning (ML) algorithms, the selection of the top-performing algorithms for a given dataset, task, and evaluation measure is known to be a challenging task. The human expertise required for this task has fueled the demand for automatic solutions. Meta-learning is a popular approach for automatic algorithm selection based on dataset characterization. Existing meta-learning methods often represent the datasets using predefined features and thus cannot be generalized for various ML tasks, or alternatively, learn their representations in a supervised fashion, and thus cannot address unsupervised tasks. In this study, we first propose a novel learning-based task-agnostic method for dataset representation. Second, we present TRIO, a meta-learning approach based on the proposed dataset representation, which is capable of accurately recommending top-performing algorithms for unseen datasets. TRIO first learns graphical representations from the datasets and then utilizes a graph convolutional neural network technique to extract their latent representations. An extensive evaluation on 337 datasets and 195 ML algorithms demonstrates the effectiveness of our approach over state-of-the-art methods for algorithm selection for both supervised (classification and regression) and unsupervised (clustering) tasks.