{"title":"Excalibur:一个个性化的元搜索引擎","authors":"L. Yuen, Matthew Chang, Y. K. Lai, C. Poon","doi":"10.1109/CMPSAC.2004.1342671","DOIUrl":null,"url":null,"abstract":"General purpose Web search engines are becoming ineffective due to the rapid growth and changes in the contents of the World Wide Web. Meta-search engines help a bit by having a better coverage of the WWW. However, users are still overwhelmed by the large amount of irrelevant results returned by a search. A promising approach to tackle the problem is personalized search. Thus the problem of capturing users' personal information need and re-organizing the results has attracted a lot of attention. In this paper, we present a meta-search engine that extracts users' preference implicitly and provides immediate response by re-ranking the results. Re-ranking is done by using the Naive Bayesian classifier and the resemblance measure. Moreover, we show that the users' preference can be succinctly represented by a few keywords.","PeriodicalId":355273,"journal":{"name":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Excalibur: a personalized meta search engine\",\"authors\":\"L. Yuen, Matthew Chang, Y. K. Lai, C. Poon\",\"doi\":\"10.1109/CMPSAC.2004.1342671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General purpose Web search engines are becoming ineffective due to the rapid growth and changes in the contents of the World Wide Web. Meta-search engines help a bit by having a better coverage of the WWW. However, users are still overwhelmed by the large amount of irrelevant results returned by a search. A promising approach to tackle the problem is personalized search. Thus the problem of capturing users' personal information need and re-organizing the results has attracted a lot of attention. In this paper, we present a meta-search engine that extracts users' preference implicitly and provides immediate response by re-ranking the results. Re-ranking is done by using the Naive Bayesian classifier and the resemblance measure. Moreover, we show that the users' preference can be succinctly represented by a few keywords.\",\"PeriodicalId\":355273,\"journal\":{\"name\":\"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMPSAC.2004.1342671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2004.1342671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
General purpose Web search engines are becoming ineffective due to the rapid growth and changes in the contents of the World Wide Web. Meta-search engines help a bit by having a better coverage of the WWW. However, users are still overwhelmed by the large amount of irrelevant results returned by a search. A promising approach to tackle the problem is personalized search. Thus the problem of capturing users' personal information need and re-organizing the results has attracted a lot of attention. In this paper, we present a meta-search engine that extracts users' preference implicitly and provides immediate response by re-ranking the results. Re-ranking is done by using the Naive Bayesian classifier and the resemblance measure. Moreover, we show that the users' preference can be succinctly represented by a few keywords.