配送系统中车辆路径问题的遗传算法

K. Uchimura, H. Sakaguchi, T. Nakashima
{"title":"配送系统中车辆路径问题的遗传算法","authors":"K. Uchimura, H. Sakaguchi, T. Nakashima","doi":"10.1109/VNIS.1994.396825","DOIUrl":null,"url":null,"abstract":"Genetic algorithms are proposed as a new learning paradigm for combinatorial optimization that models a natural evolution mechanism. The authors attempt to apply genetic algorithms to the vehicle routing problem. As it is easy to generate the same gene while a generation shift goes on, it is feared that a solution will fall into a local minimum. The authors propose a new method that does not permit overlapping of genes. Some experiments are performed on digital road maps. The authors' results show that the genetic algorithms can effectively find optimum solutions.<<ETX>>","PeriodicalId":338322,"journal":{"name":"Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Genetic algorithms for vehicle routing problem in delivery system\",\"authors\":\"K. Uchimura, H. Sakaguchi, T. Nakashima\",\"doi\":\"10.1109/VNIS.1994.396825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithms are proposed as a new learning paradigm for combinatorial optimization that models a natural evolution mechanism. The authors attempt to apply genetic algorithms to the vehicle routing problem. As it is easy to generate the same gene while a generation shift goes on, it is feared that a solution will fall into a local minimum. The authors propose a new method that does not permit overlapping of genes. Some experiments are performed on digital road maps. The authors' results show that the genetic algorithms can effectively find optimum solutions.<<ETX>>\",\"PeriodicalId\":338322,\"journal\":{\"name\":\"Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNIS.1994.396825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNIS.1994.396825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

遗传算法是一种模拟自然进化机制的组合优化学习新范式。作者尝试将遗传算法应用于车辆路径问题。在世代交替的过程中,很容易产生相同的基因,因此人们担心解决方案会陷入局部最小值。作者提出了一种不允许基因重叠的新方法。在数字道路地图上进行了一些实验。结果表明,遗传算法能有效地找到最优解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithms for vehicle routing problem in delivery system
Genetic algorithms are proposed as a new learning paradigm for combinatorial optimization that models a natural evolution mechanism. The authors attempt to apply genetic algorithms to the vehicle routing problem. As it is easy to generate the same gene while a generation shift goes on, it is feared that a solution will fall into a local minimum. The authors propose a new method that does not permit overlapping of genes. Some experiments are performed on digital road maps. The authors' results show that the genetic algorithms can effectively find optimum solutions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信