{"title":"关于类函数的归纳","authors":"G. Lusztig","doi":"10.1090/ERT/561","DOIUrl":null,"url":null,"abstract":"Let G be a connected reductive group defined over a finite field F_q and let L be the Levi subgroup (defined over F_q) of a parabolic subgroup P of G. We define a linear map from class functions on L(F_q) to class functions on G(F_q). This map is independent of the choice of P. We show that for large q this map coincides with the known cohomological induction (whose definition involves a choice of P).","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On induction of class functions\",\"authors\":\"G. Lusztig\",\"doi\":\"10.1090/ERT/561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a connected reductive group defined over a finite field F_q and let L be the Levi subgroup (defined over F_q) of a parabolic subgroup P of G. We define a linear map from class functions on L(F_q) to class functions on G(F_q). This map is independent of the choice of P. We show that for large q this map coincides with the known cohomological induction (whose definition involves a choice of P).\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/ERT/561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/ERT/561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let G be a connected reductive group defined over a finite field F_q and let L be the Levi subgroup (defined over F_q) of a parabolic subgroup P of G. We define a linear map from class functions on L(F_q) to class functions on G(F_q). This map is independent of the choice of P. We show that for large q this map coincides with the known cohomological induction (whose definition involves a choice of P).