关于类函数的归纳

G. Lusztig
{"title":"关于类函数的归纳","authors":"G. Lusztig","doi":"10.1090/ERT/561","DOIUrl":null,"url":null,"abstract":"Let G be a connected reductive group defined over a finite field F_q and let L be the Levi subgroup (defined over F_q) of a parabolic subgroup P of G. We define a linear map from class functions on L(F_q) to class functions on G(F_q). This map is independent of the choice of P. We show that for large q this map coincides with the known cohomological induction (whose definition involves a choice of P).","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On induction of class functions\",\"authors\":\"G. Lusztig\",\"doi\":\"10.1090/ERT/561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a connected reductive group defined over a finite field F_q and let L be the Levi subgroup (defined over F_q) of a parabolic subgroup P of G. We define a linear map from class functions on L(F_q) to class functions on G(F_q). This map is independent of the choice of P. We show that for large q this map coincides with the known cohomological induction (whose definition involves a choice of P).\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/ERT/561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/ERT/561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设G是定义在有限域F_q上的连通约化群,设L是G的抛物子群P的Levi子群(定义在F_q上)。我们定义了一个从L(F_q)上的类函数到G(F_q)上的类函数的线性映射。该映射与P的选择无关。我们证明,对于大q,该映射与已知的上同调归纳(其定义涉及P的选择)一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On induction of class functions
Let G be a connected reductive group defined over a finite field F_q and let L be the Levi subgroup (defined over F_q) of a parabolic subgroup P of G. We define a linear map from class functions on L(F_q) to class functions on G(F_q). This map is independent of the choice of P. We show that for large q this map coincides with the known cohomological induction (whose definition involves a choice of P).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信