三维空间中基于原目标显著性的计算立体视觉模型

Elena Mancinelli, E. Niebur, R. Etienne-Cummings
{"title":"三维空间中基于原目标显著性的计算立体视觉模型","authors":"Elena Mancinelli, E. Niebur, R. Etienne-Cummings","doi":"10.1109/BIOCAS.2018.8584679","DOIUrl":null,"url":null,"abstract":"Our visual system deals with a three-dimensional space but most of the current saliency models do not include depth information. We extend a proto-object based model to show how stereoscopic depth perception changes the ability to predict saliency on natural scenes. Results show the ability to mark depth discontinuities and a promising statistical improvement.","PeriodicalId":259162,"journal":{"name":"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational stereo-vision model of proto-object based saliency in three-dimensional space\",\"authors\":\"Elena Mancinelli, E. Niebur, R. Etienne-Cummings\",\"doi\":\"10.1109/BIOCAS.2018.8584679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our visual system deals with a three-dimensional space but most of the current saliency models do not include depth information. We extend a proto-object based model to show how stereoscopic depth perception changes the ability to predict saliency on natural scenes. Results show the ability to mark depth discontinuities and a promising statistical improvement.\",\"PeriodicalId\":259162,\"journal\":{\"name\":\"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2018.8584679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2018.8584679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们的视觉系统处理三维空间,但目前大多数显著性模型不包括深度信息。我们扩展了基于原型对象的模型,以显示立体深度感知如何改变预测自然场景显著性的能力。结果表明,该方法能够标记深度不连续,并且在统计上有很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational stereo-vision model of proto-object based saliency in three-dimensional space
Our visual system deals with a three-dimensional space but most of the current saliency models do not include depth information. We extend a proto-object based model to show how stereoscopic depth perception changes the ability to predict saliency on natural scenes. Results show the ability to mark depth discontinuities and a promising statistical improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信