{"title":"三维空间中基于原目标显著性的计算立体视觉模型","authors":"Elena Mancinelli, E. Niebur, R. Etienne-Cummings","doi":"10.1109/BIOCAS.2018.8584679","DOIUrl":null,"url":null,"abstract":"Our visual system deals with a three-dimensional space but most of the current saliency models do not include depth information. We extend a proto-object based model to show how stereoscopic depth perception changes the ability to predict saliency on natural scenes. Results show the ability to mark depth discontinuities and a promising statistical improvement.","PeriodicalId":259162,"journal":{"name":"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational stereo-vision model of proto-object based saliency in three-dimensional space\",\"authors\":\"Elena Mancinelli, E. Niebur, R. Etienne-Cummings\",\"doi\":\"10.1109/BIOCAS.2018.8584679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our visual system deals with a three-dimensional space but most of the current saliency models do not include depth information. We extend a proto-object based model to show how stereoscopic depth perception changes the ability to predict saliency on natural scenes. Results show the ability to mark depth discontinuities and a promising statistical improvement.\",\"PeriodicalId\":259162,\"journal\":{\"name\":\"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2018.8584679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2018.8584679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational stereo-vision model of proto-object based saliency in three-dimensional space
Our visual system deals with a three-dimensional space but most of the current saliency models do not include depth information. We extend a proto-object based model to show how stereoscopic depth perception changes the ability to predict saliency on natural scenes. Results show the ability to mark depth discontinuities and a promising statistical improvement.