幻灯片格式塔:用于非视觉访问的幻灯片的自动结构提取

Yi-Hao Peng, Peggy Chi, Anjuli Kannan, M. Morris, Irfan Essa
{"title":"幻灯片格式塔:用于非视觉访问的幻灯片的自动结构提取","authors":"Yi-Hao Peng, Peggy Chi, Anjuli Kannan, M. Morris, Irfan Essa","doi":"10.1145/3544548.3580921","DOIUrl":null,"url":null,"abstract":"Presentation slides commonly use visual patterns for structural navigation, such as titles, dividers, and build slides. However, screen readers do not capture such intention, making it time-consuming and less accessible for blind and visually impaired (BVI) users to linearly consume slides with repeated content. We present Slide Gestalt, an automatic approach that identifies the hierarchical structure in a slide deck. Slide Gestalt computes the visual and textual correspondences between slides to generate hierarchical groupings. Readers can navigate the slide deck from the higher-level section overview to the lower-level description of a slide group or individual elements interactively with our UI. We derived side consumption and authoring practices from interviews with BVI readers and sighted creators and an analysis of 100 decks. We performed our pipeline with 50 real-world slide decks and a large dataset. Feedback from eight BVI participants showed that Slide Gestalt helped navigate a slide deck by anchoring content more efficiently, compared to using accessible slides.","PeriodicalId":314098,"journal":{"name":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Slide Gestalt: Automatic Structure Extraction in Slide Decks for Non-Visual Access\",\"authors\":\"Yi-Hao Peng, Peggy Chi, Anjuli Kannan, M. Morris, Irfan Essa\",\"doi\":\"10.1145/3544548.3580921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presentation slides commonly use visual patterns for structural navigation, such as titles, dividers, and build slides. However, screen readers do not capture such intention, making it time-consuming and less accessible for blind and visually impaired (BVI) users to linearly consume slides with repeated content. We present Slide Gestalt, an automatic approach that identifies the hierarchical structure in a slide deck. Slide Gestalt computes the visual and textual correspondences between slides to generate hierarchical groupings. Readers can navigate the slide deck from the higher-level section overview to the lower-level description of a slide group or individual elements interactively with our UI. We derived side consumption and authoring practices from interviews with BVI readers and sighted creators and an analysis of 100 decks. We performed our pipeline with 50 real-world slide decks and a large dataset. Feedback from eight BVI participants showed that Slide Gestalt helped navigate a slide deck by anchoring content more efficiently, compared to using accessible slides.\",\"PeriodicalId\":314098,\"journal\":{\"name\":\"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544548.3580921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544548.3580921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

演示幻灯片通常使用可视化模式进行结构导航,例如标题、分隔符和构建幻灯片。然而,屏幕阅读器无法捕捉到这种意图,这使得盲人和视障(BVI)用户线性地浏览包含重复内容的幻灯片既耗时又不方便。我们介绍了幻灯片格式塔,一种自动识别幻灯片中的层次结构的方法。幻灯片格式塔计算幻灯片之间的视觉和文本对应关系,以生成分层分组。读者可以通过我们的UI交互,从较高级的部分概述导航到幻灯片组或单个元素的较低级别的描述。我们从对英属维尔京群岛读者和有远见的创作者的采访和对100个甲板的分析中得出了侧面消费和创作实践。我们使用50张真实世界的幻灯片和一个大型数据集来执行我们的流水线。来自八个英属维尔京群岛参与者的反馈表明,与使用无障碍幻灯片相比,幻灯片格式塔通过锚定内容更有效地帮助浏览幻灯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slide Gestalt: Automatic Structure Extraction in Slide Decks for Non-Visual Access
Presentation slides commonly use visual patterns for structural navigation, such as titles, dividers, and build slides. However, screen readers do not capture such intention, making it time-consuming and less accessible for blind and visually impaired (BVI) users to linearly consume slides with repeated content. We present Slide Gestalt, an automatic approach that identifies the hierarchical structure in a slide deck. Slide Gestalt computes the visual and textual correspondences between slides to generate hierarchical groupings. Readers can navigate the slide deck from the higher-level section overview to the lower-level description of a slide group or individual elements interactively with our UI. We derived side consumption and authoring practices from interviews with BVI readers and sighted creators and an analysis of 100 decks. We performed our pipeline with 50 real-world slide decks and a large dataset. Feedback from eight BVI participants showed that Slide Gestalt helped navigate a slide deck by anchoring content more efficiently, compared to using accessible slides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信