双材料全气溶胶喷射打印w波段准八木田天线

Yuxiao He, M. Craton, P. Chahal, J. Papapolymerou
{"title":"双材料全气溶胶喷射打印w波段准八木田天线","authors":"Yuxiao He, M. Craton, P. Chahal, J. Papapolymerou","doi":"10.1109/GSMM.2018.8439233","DOIUrl":null,"url":null,"abstract":"This paper presents for the first time the successful fabrication of a bi-material, fully printed W-band quasi-Yagi-Uda antenna using the Aerosol Jet printing (AJP) technology. A 4 mil Liquid Crystal Polymer (LCP) was used as the host substrate, on top of which the ground plane, the dielectric substrate and the metal antenna layer were Aerosol Jet printed. Various sizes of nozzles were used to achieve quality geometry resolution and fast prototyping. Specifically, the ground plane and the metal antenna layer were printed with silver ink using the 150 µm and 100 µm nozzles, respectively. The dielectric substrate however, was deposited using polyimide with the 300 µm nozzle. The S11was measured as −20 dB at the resonance frequency of 92.7 GHz and matches well with the −31.6 dB of simulated S11at 94 GHz. The measured and simulated −10 dB impedance bandwidth were 12.5 GHz and 8.1 GHz, respectively. 7.65 dBi of simulated maximum realized gain and 9 GHz of simulated 3 dB bandwidth were also obtained.","PeriodicalId":441407,"journal":{"name":"2018 11th Global Symposium on Millimeter Waves (GSMM)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Bi-material Fully Aerosol Jet printed W-band Quasi-Yagi-Uda Antenna\",\"authors\":\"Yuxiao He, M. Craton, P. Chahal, J. Papapolymerou\",\"doi\":\"10.1109/GSMM.2018.8439233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents for the first time the successful fabrication of a bi-material, fully printed W-band quasi-Yagi-Uda antenna using the Aerosol Jet printing (AJP) technology. A 4 mil Liquid Crystal Polymer (LCP) was used as the host substrate, on top of which the ground plane, the dielectric substrate and the metal antenna layer were Aerosol Jet printed. Various sizes of nozzles were used to achieve quality geometry resolution and fast prototyping. Specifically, the ground plane and the metal antenna layer were printed with silver ink using the 150 µm and 100 µm nozzles, respectively. The dielectric substrate however, was deposited using polyimide with the 300 µm nozzle. The S11was measured as −20 dB at the resonance frequency of 92.7 GHz and matches well with the −31.6 dB of simulated S11at 94 GHz. The measured and simulated −10 dB impedance bandwidth were 12.5 GHz and 8.1 GHz, respectively. 7.65 dBi of simulated maximum realized gain and 9 GHz of simulated 3 dB bandwidth were also obtained.\",\"PeriodicalId\":441407,\"journal\":{\"name\":\"2018 11th Global Symposium on Millimeter Waves (GSMM)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th Global Symposium on Millimeter Waves (GSMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSMM.2018.8439233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Global Symposium on Millimeter Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2018.8439233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文首次利用气溶胶喷射打印技术成功制备了双材料全印刷w波段准八木田天线。采用4mil液晶聚合物(LCP)作为主衬底,在其上喷雾器打印接地面、介电衬底和金属天线层。采用不同尺寸的喷嘴来实现高质量的几何分辨率和快速成型。具体来说,接地面和金属天线层分别使用150µm和100µm喷嘴用银墨打印。然而,电介质衬底是用聚酰亚胺和300µm喷嘴沉积的。在92.7 GHz的谐振频率下,s11的测量值为- 20 dB,与模拟s11在94 GHz时的- 31.6 dB匹配良好。测量和模拟的−10 dB阻抗带宽分别为12.5 GHz和8.1 GHz。模拟最大实现增益为7.65 dBi,模拟3db带宽为9 GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bi-material Fully Aerosol Jet printed W-band Quasi-Yagi-Uda Antenna
This paper presents for the first time the successful fabrication of a bi-material, fully printed W-band quasi-Yagi-Uda antenna using the Aerosol Jet printing (AJP) technology. A 4 mil Liquid Crystal Polymer (LCP) was used as the host substrate, on top of which the ground plane, the dielectric substrate and the metal antenna layer were Aerosol Jet printed. Various sizes of nozzles were used to achieve quality geometry resolution and fast prototyping. Specifically, the ground plane and the metal antenna layer were printed with silver ink using the 150 µm and 100 µm nozzles, respectively. The dielectric substrate however, was deposited using polyimide with the 300 µm nozzle. The S11was measured as −20 dB at the resonance frequency of 92.7 GHz and matches well with the −31.6 dB of simulated S11at 94 GHz. The measured and simulated −10 dB impedance bandwidth were 12.5 GHz and 8.1 GHz, respectively. 7.65 dBi of simulated maximum realized gain and 9 GHz of simulated 3 dB bandwidth were also obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信