Yussef Hanna, Marlene Kallass, Á. Barroso, J. Schnekenburger, K. Brinker, B. Kemper
{"title":"基于数字全息显微镜检索的物理粒子数据,使用监督机器学习对尿液成分进行分类","authors":"Yussef Hanna, Marlene Kallass, Á. Barroso, J. Schnekenburger, K. Brinker, B. Kemper","doi":"10.1364/dh.2022.th2a.5","DOIUrl":null,"url":null,"abstract":"We explored the capabilities of supervised machine learning to classify urine sediment based on physical parameters retrieved from quantitative digital holographic phase contrast images.","PeriodicalId":227456,"journal":{"name":"Digital Holography and 3-D Imaging 2022","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of urine components using supervised machine learning based on physical particle data retrieved by digital holographic microscopy\",\"authors\":\"Yussef Hanna, Marlene Kallass, Á. Barroso, J. Schnekenburger, K. Brinker, B. Kemper\",\"doi\":\"10.1364/dh.2022.th2a.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explored the capabilities of supervised machine learning to classify urine sediment based on physical parameters retrieved from quantitative digital holographic phase contrast images.\",\"PeriodicalId\":227456,\"journal\":{\"name\":\"Digital Holography and 3-D Imaging 2022\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Holography and 3-D Imaging 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/dh.2022.th2a.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and 3-D Imaging 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/dh.2022.th2a.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of urine components using supervised machine learning based on physical particle data retrieved by digital holographic microscopy
We explored the capabilities of supervised machine learning to classify urine sediment based on physical parameters retrieved from quantitative digital holographic phase contrast images.