基于数字全息显微镜检索的物理粒子数据,使用监督机器学习对尿液成分进行分类

Yussef Hanna, Marlene Kallass, Á. Barroso, J. Schnekenburger, K. Brinker, B. Kemper
{"title":"基于数字全息显微镜检索的物理粒子数据,使用监督机器学习对尿液成分进行分类","authors":"Yussef Hanna, Marlene Kallass, Á. Barroso, J. Schnekenburger, K. Brinker, B. Kemper","doi":"10.1364/dh.2022.th2a.5","DOIUrl":null,"url":null,"abstract":"We explored the capabilities of supervised machine learning to classify urine sediment based on physical parameters retrieved from quantitative digital holographic phase contrast images.","PeriodicalId":227456,"journal":{"name":"Digital Holography and 3-D Imaging 2022","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of urine components using supervised machine learning based on physical particle data retrieved by digital holographic microscopy\",\"authors\":\"Yussef Hanna, Marlene Kallass, Á. Barroso, J. Schnekenburger, K. Brinker, B. Kemper\",\"doi\":\"10.1364/dh.2022.th2a.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explored the capabilities of supervised machine learning to classify urine sediment based on physical parameters retrieved from quantitative digital holographic phase contrast images.\",\"PeriodicalId\":227456,\"journal\":{\"name\":\"Digital Holography and 3-D Imaging 2022\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Holography and 3-D Imaging 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/dh.2022.th2a.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and 3-D Imaging 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/dh.2022.th2a.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们探索了监督机器学习的能力,基于从定量数字全息相对比图像中检索的物理参数对尿液沉积物进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of urine components using supervised machine learning based on physical particle data retrieved by digital holographic microscopy
We explored the capabilities of supervised machine learning to classify urine sediment based on physical parameters retrieved from quantitative digital holographic phase contrast images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信