{"title":"基于滤波器组的通用去马赛克","authors":"Jing Gu, P. Wolfe, Keigo Hirakawa","doi":"10.1109/ICIP.2010.5649949","DOIUrl":null,"url":null,"abstract":"Recent advances in spatio-spectral sampling and panchromatic pixels have contributed to increased spatial resolution and enhanced noise performance. As such, it is necessary to consider the universality of demosaicking design principles—instead of CFA-specific optimization for signal recovery. In this article, we introduce a new universal demosaicking method that draws from the lessons learned in Bayer demosaicking designs, but can be applied to arbitrary array patterns. We recast the data-dependence of Bayer demosaicking as a parsimonious reconstruction of the underlying image signal that is inherently sparse in some representation. Using properties of filterbanks, we generalize this principle to yield a nonlinear recovery method that is consistent with the state-of-the-art Bayer demosaicking methods.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Filterbank-based universal demosaicking\",\"authors\":\"Jing Gu, P. Wolfe, Keigo Hirakawa\",\"doi\":\"10.1109/ICIP.2010.5649949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in spatio-spectral sampling and panchromatic pixels have contributed to increased spatial resolution and enhanced noise performance. As such, it is necessary to consider the universality of demosaicking design principles—instead of CFA-specific optimization for signal recovery. In this article, we introduce a new universal demosaicking method that draws from the lessons learned in Bayer demosaicking designs, but can be applied to arbitrary array patterns. We recast the data-dependence of Bayer demosaicking as a parsimonious reconstruction of the underlying image signal that is inherently sparse in some representation. Using properties of filterbanks, we generalize this principle to yield a nonlinear recovery method that is consistent with the state-of-the-art Bayer demosaicking methods.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5649949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5649949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in spatio-spectral sampling and panchromatic pixels have contributed to increased spatial resolution and enhanced noise performance. As such, it is necessary to consider the universality of demosaicking design principles—instead of CFA-specific optimization for signal recovery. In this article, we introduce a new universal demosaicking method that draws from the lessons learned in Bayer demosaicking designs, but can be applied to arbitrary array patterns. We recast the data-dependence of Bayer demosaicking as a parsimonious reconstruction of the underlying image signal that is inherently sparse in some representation. Using properties of filterbanks, we generalize this principle to yield a nonlinear recovery method that is consistent with the state-of-the-art Bayer demosaicking methods.