用分类器系统检测股票市场异常

Hakan Aksoy, Ismail Saglam
{"title":"用分类器系统检测股票市场异常","authors":"Hakan Aksoy, Ismail Saglam","doi":"10.2139/ssrn.302650","DOIUrl":null,"url":null,"abstract":"This paper presents a classifier system to detect stock market anomalies. The classifier system groups the last 15 years' daily data of the ISE100 Index of the Istanbul Securities Exchange into classes of fixed size, and computes for every observation in each class the return over the succeding T days. Next, the average return in each class is calculated. Confidence intervals for average returns are constructed using bootstrap re-sampling method. It is observed that for an investment period of at least one year, average classified returns becomes positive at all levels of the ISE100 Index, strengthening the now well-known assertion that the ISE is not weak form efficient.","PeriodicalId":151935,"journal":{"name":"EFA 2002 Submissions","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting a Stock Market Anomaly with a Classifier System\",\"authors\":\"Hakan Aksoy, Ismail Saglam\",\"doi\":\"10.2139/ssrn.302650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a classifier system to detect stock market anomalies. The classifier system groups the last 15 years' daily data of the ISE100 Index of the Istanbul Securities Exchange into classes of fixed size, and computes for every observation in each class the return over the succeding T days. Next, the average return in each class is calculated. Confidence intervals for average returns are constructed using bootstrap re-sampling method. It is observed that for an investment period of at least one year, average classified returns becomes positive at all levels of the ISE100 Index, strengthening the now well-known assertion that the ISE is not weak form efficient.\",\"PeriodicalId\":151935,\"journal\":{\"name\":\"EFA 2002 Submissions\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EFA 2002 Submissions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.302650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EFA 2002 Submissions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.302650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于股票市场异常检测的分类器系统。分类器系统将伊斯坦布尔证券交易所ISE100指数最近15年的每日数据分组为固定大小的类别,并计算每个类别中每个观察值在随后的T天内的收益。接下来,计算每个类别的平均收益。采用自举重抽样方法构造了平均收益的置信区间。可以观察到,在至少一年的投资期内,ISE100指数的所有水平的平均分类回报都变为正值,这加强了现在众所周知的断言,即ISE不是弱形式有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting a Stock Market Anomaly with a Classifier System
This paper presents a classifier system to detect stock market anomalies. The classifier system groups the last 15 years' daily data of the ISE100 Index of the Istanbul Securities Exchange into classes of fixed size, and computes for every observation in each class the return over the succeding T days. Next, the average return in each class is calculated. Confidence intervals for average returns are constructed using bootstrap re-sampling method. It is observed that for an investment period of at least one year, average classified returns becomes positive at all levels of the ISE100 Index, strengthening the now well-known assertion that the ISE is not weak form efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信