N. Rostand, S. Martinie, J. Lacord, O. Rozeau, O. Billoint, J. Barbe, T. Poiroux, G. Hubert
{"title":"用于SPICE的块体MOSFET单事件瞬态的紧凑建模:在初级电路中的应用","authors":"N. Rostand, S. Martinie, J. Lacord, O. Rozeau, O. Billoint, J. Barbe, T. Poiroux, G. Hubert","doi":"10.1109/SISPAD.2018.8551633","DOIUrl":null,"url":null,"abstract":"Single Event Transients (SET) are important issues concerning reliability of CMOS circuits. They lead to occurrence of soft errors in integrated circuits, such as Single Event Upset (SEU) which consists in unexpected bit state switch in SRAM cells [1], [2]. We can find models which describe SET in literature [1], [5] but they are not compact (i e. physical model implemented in Verilog-A). In previous work [6], we proposed a theoretical SET model but the implementation in Verilog-A was still challenging. Here, we describe the implementation in Verilog-A of this model and use it through standard SPICE simulations to study the effect of SET on SRAM cell and shift register.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compact Modelling of Single Event Transient in Bulk MOSFET for SPICE: Application to Elementary Circuit\",\"authors\":\"N. Rostand, S. Martinie, J. Lacord, O. Rozeau, O. Billoint, J. Barbe, T. Poiroux, G. Hubert\",\"doi\":\"10.1109/SISPAD.2018.8551633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single Event Transients (SET) are important issues concerning reliability of CMOS circuits. They lead to occurrence of soft errors in integrated circuits, such as Single Event Upset (SEU) which consists in unexpected bit state switch in SRAM cells [1], [2]. We can find models which describe SET in literature [1], [5] but they are not compact (i e. physical model implemented in Verilog-A). In previous work [6], we proposed a theoretical SET model but the implementation in Verilog-A was still challenging. Here, we describe the implementation in Verilog-A of this model and use it through standard SPICE simulations to study the effect of SET on SRAM cell and shift register.\",\"PeriodicalId\":170070,\"journal\":{\"name\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2018.8551633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact Modelling of Single Event Transient in Bulk MOSFET for SPICE: Application to Elementary Circuit
Single Event Transients (SET) are important issues concerning reliability of CMOS circuits. They lead to occurrence of soft errors in integrated circuits, such as Single Event Upset (SEU) which consists in unexpected bit state switch in SRAM cells [1], [2]. We can find models which describe SET in literature [1], [5] but they are not compact (i e. physical model implemented in Verilog-A). In previous work [6], we proposed a theoretical SET model but the implementation in Verilog-A was still challenging. Here, we describe the implementation in Verilog-A of this model and use it through standard SPICE simulations to study the effect of SET on SRAM cell and shift register.