SNK @ DANKMEMES:利用预训练嵌入进行多模态模因检测(短文)

S. Fiorucci
{"title":"SNK @ DANKMEMES:利用预训练嵌入进行多模态模因检测(短文)","authors":"S. Fiorucci","doi":"10.4000/BOOKS.AACCADEMIA.7352","DOIUrl":null,"url":null,"abstract":"English. In this paper, we describe and present the results of meme detection system, specifically developed and submitted for our participation to the first subtask of DANKMEMES (EVALITA 2020). We built simple classifiers, consisting in feed forward neural networks. They leverage existing pretrained embeddings, both for text and image representation. Our best system (SNK1) achieves good results in meme detection (F1 = 0.8473), ranking 2nd in the competition, at a distance of 0.0028 from the first classified. Italiano. In questo articolo, descriviamo e presentiamo i risultati di un sistema di individuazione dei meme, ideato e sviluppato per partecipare al primo subtask di DANKMEMES (EVALITA 2020). Abbiamo realizzato dei semplici classificatori, costituiti da una rete neurale feed-forward: essi sfruttano embedding preesistenti, per la rappresentazione numerica di testo e immagini. Il nostro miglior sistema (SNK1) raggiunge buoni risultati nell’individuazione dei meme (F1 = 0.8473) e si è classificato secondo nella competizione, ad una distanza di 0.0028 dal primo classificato. 1 System description 1.1 General approach and tools DANKMEMES (Miliani et al., 2020) is a task for meme recognition and hate speech/event identification in memes and is part of the EVALITA 2020 evaluation campaign (Basile et al., 2020). Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0) For our participation to the first subtask of DANKEMES, we built simple classification models for meme detection. The main challenge is to effectively combine textual and image inputs. We tried to exploit the ability of pretrained embedding to represent the information present in text and images, paying a limited computational cost. To quickly build various prototypes of neural networks, we used Uber Ludwig framework (Molino et al., 2019): a toolbox built on top of TensorFlow, which facilitates and speeds up the training and testing of various models. We trained our models using Google Colaboratory, a hosted Jupyter notebook service, which provides free access to GPUs, with some resource and time limitations.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SNK @ DANKMEMES: Leveraging Pretrained Embeddings for Multimodal Meme Detection (short paper)\",\"authors\":\"S. Fiorucci\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. In this paper, we describe and present the results of meme detection system, specifically developed and submitted for our participation to the first subtask of DANKMEMES (EVALITA 2020). We built simple classifiers, consisting in feed forward neural networks. They leverage existing pretrained embeddings, both for text and image representation. Our best system (SNK1) achieves good results in meme detection (F1 = 0.8473), ranking 2nd in the competition, at a distance of 0.0028 from the first classified. Italiano. In questo articolo, descriviamo e presentiamo i risultati di un sistema di individuazione dei meme, ideato e sviluppato per partecipare al primo subtask di DANKMEMES (EVALITA 2020). Abbiamo realizzato dei semplici classificatori, costituiti da una rete neurale feed-forward: essi sfruttano embedding preesistenti, per la rappresentazione numerica di testo e immagini. Il nostro miglior sistema (SNK1) raggiunge buoni risultati nell’individuazione dei meme (F1 = 0.8473) e si è classificato secondo nella competizione, ad una distanza di 0.0028 dal primo classificato. 1 System description 1.1 General approach and tools DANKMEMES (Miliani et al., 2020) is a task for meme recognition and hate speech/event identification in memes and is part of the EVALITA 2020 evaluation campaign (Basile et al., 2020). Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0) For our participation to the first subtask of DANKEMES, we built simple classification models for meme detection. The main challenge is to effectively combine textual and image inputs. We tried to exploit the ability of pretrained embedding to represent the information present in text and images, paying a limited computational cost. To quickly build various prototypes of neural networks, we used Uber Ludwig framework (Molino et al., 2019): a toolbox built on top of TensorFlow, which facilitates and speeds up the training and testing of various models. We trained our models using Google Colaboratory, a hosted Jupyter notebook service, which provides free access to GPUs, with some resource and time limitations.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

English。在这份文件中,我们描述并展示了模因探测系统的结果,这些结果是专门为我们参与DANKMEMES的第一个子任务而开发和限制的。我们建立了简单的排名,包括向前神经网络。他们对文本和图像表示进行预先培训和嵌入。我们最好的系统(SNK1)在模因探测方面取得了良好的结果(F1 = 0.8473),在比赛中排名第二,距离第一名0.0028。意大利。在这篇文章中,我们描述并展示了一个模因识别系统的结果,该系统旨在参与DANKMEMES的第一个子任务(eveta 2020)。我们开发了简单的分类器,它是一个神经网络的反馈-前置:它们利用现有的嵌入来生成文本和图像的数字表示。我们最好的系统(SNK1)在识别模因方面表现良好(F1 = 0.8473),在比赛中排名第二,距离第一名0.0028。1系统描述1.1通用方法和工具DANKMEMES (Miliani et al., 2020)是一个模因识别和仇恨言论/事件识别工作组,是2020年evaluation运动的一部分(Basile et al., 2020)。版权所有©2020 for this paper by its authors。使用知识共享许可归属4.0国际(CC BY 4.0)授权我们参与第一个DANKEMES子任务,我们为模因探测构建简单的分类模型。主要的挑战是有效地结合文本和图像输入。我们试图利用预先训练和嵌入文本和图像中的信息的能力,支付有限的计算成本。为了快速构建神经网络的不同原型,我们使用路德维希框架(Molino et al., 2019):在TensorFlow的顶部建立一个工具箱,它提供设施,并提供各种模型的培训和测试。我们训练我们的模型使用谷歌Colaboratory,一个托管Jupyter notebook服务,提供免费访问GPUs,有一些资源和时间限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SNK @ DANKMEMES: Leveraging Pretrained Embeddings for Multimodal Meme Detection (short paper)
English. In this paper, we describe and present the results of meme detection system, specifically developed and submitted for our participation to the first subtask of DANKMEMES (EVALITA 2020). We built simple classifiers, consisting in feed forward neural networks. They leverage existing pretrained embeddings, both for text and image representation. Our best system (SNK1) achieves good results in meme detection (F1 = 0.8473), ranking 2nd in the competition, at a distance of 0.0028 from the first classified. Italiano. In questo articolo, descriviamo e presentiamo i risultati di un sistema di individuazione dei meme, ideato e sviluppato per partecipare al primo subtask di DANKMEMES (EVALITA 2020). Abbiamo realizzato dei semplici classificatori, costituiti da una rete neurale feed-forward: essi sfruttano embedding preesistenti, per la rappresentazione numerica di testo e immagini. Il nostro miglior sistema (SNK1) raggiunge buoni risultati nell’individuazione dei meme (F1 = 0.8473) e si è classificato secondo nella competizione, ad una distanza di 0.0028 dal primo classificato. 1 System description 1.1 General approach and tools DANKMEMES (Miliani et al., 2020) is a task for meme recognition and hate speech/event identification in memes and is part of the EVALITA 2020 evaluation campaign (Basile et al., 2020). Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0) For our participation to the first subtask of DANKEMES, we built simple classification models for meme detection. The main challenge is to effectively combine textual and image inputs. We tried to exploit the ability of pretrained embedding to represent the information present in text and images, paying a limited computational cost. To quickly build various prototypes of neural networks, we used Uber Ludwig framework (Molino et al., 2019): a toolbox built on top of TensorFlow, which facilitates and speeds up the training and testing of various models. We trained our models using Google Colaboratory, a hosted Jupyter notebook service, which provides free access to GPUs, with some resource and time limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信