使用决策树的共同参考解决方案

Zoran Dzunic, Svetislav Momcilovic, B. Todorovic, M.S. Stankovic
{"title":"使用决策树的共同参考解决方案","authors":"Zoran Dzunic, Svetislav Momcilovic, B. Todorovic, M.S. Stankovic","doi":"10.1109/NEUREL.2006.341188","DOIUrl":null,"url":null,"abstract":"Coreference resolution is the process of determining whether two expressions in natural language refer to the same entity in the world. We adopt machine learning approach using decision tree to a coreference resolution of general noun phrases in unrestricted text based on well defined features. We also use approximate matching algorithms for a string match feature and databases of American last names and male and female first names for gender agreement and alias feature. For the evaluation we use MUC-6 coreference corpora. We show that pessimistic error pruning method gives better generalization in a coreference resolution task than that reported in W.M. Soon et al. (2001) when weights of positive and negative examples are properly chosen","PeriodicalId":231606,"journal":{"name":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Coreference Resolution Using Decision Trees\",\"authors\":\"Zoran Dzunic, Svetislav Momcilovic, B. Todorovic, M.S. Stankovic\",\"doi\":\"10.1109/NEUREL.2006.341188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coreference resolution is the process of determining whether two expressions in natural language refer to the same entity in the world. We adopt machine learning approach using decision tree to a coreference resolution of general noun phrases in unrestricted text based on well defined features. We also use approximate matching algorithms for a string match feature and databases of American last names and male and female first names for gender agreement and alias feature. For the evaluation we use MUC-6 coreference corpora. We show that pessimistic error pruning method gives better generalization in a coreference resolution task than that reported in W.M. Soon et al. (2001) when weights of positive and negative examples are properly chosen\",\"PeriodicalId\":231606,\"journal\":{\"name\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2006.341188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2006.341188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

共指解析是确定自然语言中的两个表达式是否指世界上同一实体的过程。我们采用决策树的机器学习方法,基于良好定义的特征对不受限制文本中的一般名词短语进行共指解析。我们还为字符串匹配特征使用近似匹配算法,并为性别一致和别名特征使用美国姓氏和男女名数据库。我们使用MUC-6共同参考语料库进行评价。我们表明,当正确选择正例和负例的权重时,悲观误差修剪方法在共参考解析任务中比W.M. Soon等人(2001)报道的方法具有更好的泛化效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coreference Resolution Using Decision Trees
Coreference resolution is the process of determining whether two expressions in natural language refer to the same entity in the world. We adopt machine learning approach using decision tree to a coreference resolution of general noun phrases in unrestricted text based on well defined features. We also use approximate matching algorithms for a string match feature and databases of American last names and male and female first names for gender agreement and alias feature. For the evaluation we use MUC-6 coreference corpora. We show that pessimistic error pruning method gives better generalization in a coreference resolution task than that reported in W.M. Soon et al. (2001) when weights of positive and negative examples are properly chosen
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信