基于BiLSTM-CRF和Seq2Seq的知识图问答方法

Yiying Zhang, Caixia Ma, Yeshen He, Kun Liang, Yannian Wu, Zhu Liu
{"title":"基于BiLSTM-CRF和Seq2Seq的知识图问答方法","authors":"Yiying Zhang, Caixia Ma, Yeshen He, Kun Liang, Yannian Wu, Zhu Liu","doi":"10.1109/ICTech55460.2022.00017","DOIUrl":null,"url":null,"abstract":"In natural language processing, intelligent question answering based on knowledge graph has received great attention. In the previous knowledge base question answering, the traditional word vector is difficult to express the text semantic information, and the cyclic neural network is easy to cause gradient disappearance and gradient explosion. At the same time, it is lack of comprehensive consideration of text context information. This paper proposes an intelligent Q & A method based on knowledge graph, which uses BiLSTM-CRF model to realize entity recognition. The intelligent Q & A model is constructed based on Seq2Seq, and the above methods are verified by taking the intelligent Q & A as an example, which effectively improves the accuracy of intelligent Q & A.","PeriodicalId":290836,"journal":{"name":"2022 11th International Conference of Information and Communication Technology (ICTech))","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Question Answering Method of Knowledge Graph Based on BiLSTM-CRF and Seq2Seq\",\"authors\":\"Yiying Zhang, Caixia Ma, Yeshen He, Kun Liang, Yannian Wu, Zhu Liu\",\"doi\":\"10.1109/ICTech55460.2022.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In natural language processing, intelligent question answering based on knowledge graph has received great attention. In the previous knowledge base question answering, the traditional word vector is difficult to express the text semantic information, and the cyclic neural network is easy to cause gradient disappearance and gradient explosion. At the same time, it is lack of comprehensive consideration of text context information. This paper proposes an intelligent Q & A method based on knowledge graph, which uses BiLSTM-CRF model to realize entity recognition. The intelligent Q & A model is constructed based on Seq2Seq, and the above methods are verified by taking the intelligent Q & A as an example, which effectively improves the accuracy of intelligent Q & A.\",\"PeriodicalId\":290836,\"journal\":{\"name\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference of Information and Communication Technology (ICTech))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTech55460.2022.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference of Information and Communication Technology (ICTech))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTech55460.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在自然语言处理中,基于知识图的智能问答受到了广泛关注。在以往的知识库问答中,传统的词向量难以表达文本语义信息,循环神经网络容易造成梯度消失和梯度爆炸。同时,缺乏对文本语境信息的综合考虑。本文提出了一种基于知识图的智能问答方法,利用BiLSTM-CRF模型实现实体识别。基于Seq2Seq构建了智能问答模型,并以智能问答为例对上述方法进行了验证,有效地提高了智能问答的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Question Answering Method of Knowledge Graph Based on BiLSTM-CRF and Seq2Seq
In natural language processing, intelligent question answering based on knowledge graph has received great attention. In the previous knowledge base question answering, the traditional word vector is difficult to express the text semantic information, and the cyclic neural network is easy to cause gradient disappearance and gradient explosion. At the same time, it is lack of comprehensive consideration of text context information. This paper proposes an intelligent Q & A method based on knowledge graph, which uses BiLSTM-CRF model to realize entity recognition. The intelligent Q & A model is constructed based on Seq2Seq, and the above methods are verified by taking the intelligent Q & A as an example, which effectively improves the accuracy of intelligent Q & A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信