B. Faria, Luis Paulo Reis, N. Lau, Gladys Castillo
{"title":"机器学习算法应用于机器人足球阵型和对手球队的分类","authors":"B. Faria, Luis Paulo Reis, N. Lau, Gladys Castillo","doi":"10.1109/ICCIS.2010.5518540","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) and Knowledge Discovery (KD) are research areas with several different applications but that share a common objective of acquiring more and new information from data. This paper presents an application of several ML techniques in the identification of the opponent team and also on the classification of robotic soccer formations in the context of RoboCup international robotic soccer competition. RoboCup international project includes several distinct leagues were teams composed by different types of real or simulated robots play soccer games following a set of pre-established rules. The simulated 2D league uses simulated robots encouraging research on artificial intelligence methodologies like high-level coordination and machine learning techniques. The experimental tests performed, using four distinct datasets, enabled us to conclude that the Support Vector Machines (SVM) technique has higher accuracy than the k-Nearest Neighbor, Neural Networks and Kernel Naïve Bayes in terms of adaptation to a new kind of data. Also, the experimental results enable to conclude that using the Principal Component Analysis SVM achieves worse results than using simpler methods that have as primary assumption the distance between samples, like k-NN.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Machine Learning algorithms applied to the classification of robotic soccer formations and opponent teams\",\"authors\":\"B. Faria, Luis Paulo Reis, N. Lau, Gladys Castillo\",\"doi\":\"10.1109/ICCIS.2010.5518540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) and Knowledge Discovery (KD) are research areas with several different applications but that share a common objective of acquiring more and new information from data. This paper presents an application of several ML techniques in the identification of the opponent team and also on the classification of robotic soccer formations in the context of RoboCup international robotic soccer competition. RoboCup international project includes several distinct leagues were teams composed by different types of real or simulated robots play soccer games following a set of pre-established rules. The simulated 2D league uses simulated robots encouraging research on artificial intelligence methodologies like high-level coordination and machine learning techniques. The experimental tests performed, using four distinct datasets, enabled us to conclude that the Support Vector Machines (SVM) technique has higher accuracy than the k-Nearest Neighbor, Neural Networks and Kernel Naïve Bayes in terms of adaptation to a new kind of data. Also, the experimental results enable to conclude that using the Principal Component Analysis SVM achieves worse results than using simpler methods that have as primary assumption the distance between samples, like k-NN.\",\"PeriodicalId\":445473,\"journal\":{\"name\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.5518540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning algorithms applied to the classification of robotic soccer formations and opponent teams
Machine Learning (ML) and Knowledge Discovery (KD) are research areas with several different applications but that share a common objective of acquiring more and new information from data. This paper presents an application of several ML techniques in the identification of the opponent team and also on the classification of robotic soccer formations in the context of RoboCup international robotic soccer competition. RoboCup international project includes several distinct leagues were teams composed by different types of real or simulated robots play soccer games following a set of pre-established rules. The simulated 2D league uses simulated robots encouraging research on artificial intelligence methodologies like high-level coordination and machine learning techniques. The experimental tests performed, using four distinct datasets, enabled us to conclude that the Support Vector Machines (SVM) technique has higher accuracy than the k-Nearest Neighbor, Neural Networks and Kernel Naïve Bayes in terms of adaptation to a new kind of data. Also, the experimental results enable to conclude that using the Principal Component Analysis SVM achieves worse results than using simpler methods that have as primary assumption the distance between samples, like k-NN.