电梯流量分布估计的研究

Fu Guo-jiang, Pian Jinxiang
{"title":"电梯流量分布估计的研究","authors":"Fu Guo-jiang, Pian Jinxiang","doi":"10.1109/ICCIAUTOM.2011.6184010","DOIUrl":null,"url":null,"abstract":"The elevator traffic distribution is the essential and basis data for elevator traffic configuration, traffic pattern categorization and recognition, traffic forecasting and learning. The maximizing entropy model is proposed to estimate origin-destination passenger flow matrix of elevator system with the destination hall call system, making fully use of hall call information and in-out passenger datum, and a matrix-based chromosome coded genetic algorithm is introduced to solve the model. A practical example shows its validity.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the elevator traffic distribution estimation\",\"authors\":\"Fu Guo-jiang, Pian Jinxiang\",\"doi\":\"10.1109/ICCIAUTOM.2011.6184010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The elevator traffic distribution is the essential and basis data for elevator traffic configuration, traffic pattern categorization and recognition, traffic forecasting and learning. The maximizing entropy model is proposed to estimate origin-destination passenger flow matrix of elevator system with the destination hall call system, making fully use of hall call information and in-out passenger datum, and a matrix-based chromosome coded genetic algorithm is introduced to solve the model. A practical example shows its validity.\",\"PeriodicalId\":177039,\"journal\":{\"name\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6184010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6184010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电梯交通分布是电梯交通配置、交通模式分类与识别、交通预测与学习的必要基础数据。在充分利用厅召唤信息和进出客流数据的基础上,提出了利用厅召唤信息估计电梯系统始发至目的地客流矩阵的最大熵模型,并引入了基于矩阵的染色体编码遗传算法求解该模型。实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the elevator traffic distribution estimation
The elevator traffic distribution is the essential and basis data for elevator traffic configuration, traffic pattern categorization and recognition, traffic forecasting and learning. The maximizing entropy model is proposed to estimate origin-destination passenger flow matrix of elevator system with the destination hall call system, making fully use of hall call information and in-out passenger datum, and a matrix-based chromosome coded genetic algorithm is introduced to solve the model. A practical example shows its validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信