{"title":"面向视频/图像内容描述的全方位人脸检测","authors":"Gang Wei, I. Sethi","doi":"10.1145/357744.357930","DOIUrl":null,"url":null,"abstract":"An omni-face detection scheme for image/video content description is proposed in this paper. It provides the ability to extract high-level features in terms of human activities rather than low-level features like color, texture and shape. The system relies on an omni-face detection system capable of locating human faces over a broad range of views in color images or videos with complex scenes. It uses the presence of skin-tone pixels coupled with shape, edge pattern and face-specific features to locate faces. The main distinguishing contribution of this work is being able to detect faces irrespective of their poses, including frontal-view and side-view, whereas contemporary systems deal with frontal-view faces only. The other novel aspects of the work lie in its iterative candidate filtering to segment objects from extraneous region, the use of Hausdorff distance-based normalized similarity measure to identify side-view facial profiles, and the exploration of hidden Markov model (HMM) to verify the presence of a side-view face. Image and video can be assigned with semantic descriptors based on human face information for later indexing and retrieval.","PeriodicalId":234597,"journal":{"name":"MULTIMEDIA '00","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Omni-face detection for video/image content description\",\"authors\":\"Gang Wei, I. Sethi\",\"doi\":\"10.1145/357744.357930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An omni-face detection scheme for image/video content description is proposed in this paper. It provides the ability to extract high-level features in terms of human activities rather than low-level features like color, texture and shape. The system relies on an omni-face detection system capable of locating human faces over a broad range of views in color images or videos with complex scenes. It uses the presence of skin-tone pixels coupled with shape, edge pattern and face-specific features to locate faces. The main distinguishing contribution of this work is being able to detect faces irrespective of their poses, including frontal-view and side-view, whereas contemporary systems deal with frontal-view faces only. The other novel aspects of the work lie in its iterative candidate filtering to segment objects from extraneous region, the use of Hausdorff distance-based normalized similarity measure to identify side-view facial profiles, and the exploration of hidden Markov model (HMM) to verify the presence of a side-view face. Image and video can be assigned with semantic descriptors based on human face information for later indexing and retrieval.\",\"PeriodicalId\":234597,\"journal\":{\"name\":\"MULTIMEDIA '00\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '00\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/357744.357930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '00","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/357744.357930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Omni-face detection for video/image content description
An omni-face detection scheme for image/video content description is proposed in this paper. It provides the ability to extract high-level features in terms of human activities rather than low-level features like color, texture and shape. The system relies on an omni-face detection system capable of locating human faces over a broad range of views in color images or videos with complex scenes. It uses the presence of skin-tone pixels coupled with shape, edge pattern and face-specific features to locate faces. The main distinguishing contribution of this work is being able to detect faces irrespective of their poses, including frontal-view and side-view, whereas contemporary systems deal with frontal-view faces only. The other novel aspects of the work lie in its iterative candidate filtering to segment objects from extraneous region, the use of Hausdorff distance-based normalized similarity measure to identify side-view facial profiles, and the exploration of hidden Markov model (HMM) to verify the presence of a side-view face. Image and video can be assigned with semantic descriptors based on human face information for later indexing and retrieval.