基于神经贝叶斯估计的无似然参数估计

Matthew Sainsbury-Dale, A. Zammit‐Mangion, Raphael Huser
{"title":"基于神经贝叶斯估计的无似然参数估计","authors":"Matthew Sainsbury-Dale, A. Zammit‐Mangion, Raphael Huser","doi":"10.1080/00031305.2023.2249522","DOIUrl":null,"url":null,"abstract":"Neural point estimators are neural networks that map data to parameter point estimates. They are fast, likelihood free and, due to their amortised nature, amenable to fast bootstrap-based uncertainty quantification. In this paper, we aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software. We also give attention to the ubiquitous problem of making inference from replicated data, which we address in the neural setting using permutation-invariant neural networks. Through extensive simulation studies we show that these neural point estimators can quickly and optimally (in a Bayes sense) estimate parameters in weakly-identified and highly-parameterised models with relative ease. We demonstrate their applicability through an analysis of extreme sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates and bootstrap-based confidence intervals from hundreds of spatial fields in a fraction of a second.","PeriodicalId":342642,"journal":{"name":"The American Statistician","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Likelihood-Free Parameter Estimation with Neural Bayes Estimators\",\"authors\":\"Matthew Sainsbury-Dale, A. Zammit‐Mangion, Raphael Huser\",\"doi\":\"10.1080/00031305.2023.2249522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural point estimators are neural networks that map data to parameter point estimates. They are fast, likelihood free and, due to their amortised nature, amenable to fast bootstrap-based uncertainty quantification. In this paper, we aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software. We also give attention to the ubiquitous problem of making inference from replicated data, which we address in the neural setting using permutation-invariant neural networks. Through extensive simulation studies we show that these neural point estimators can quickly and optimally (in a Bayes sense) estimate parameters in weakly-identified and highly-parameterised models with relative ease. We demonstrate their applicability through an analysis of extreme sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates and bootstrap-based confidence intervals from hundreds of spatial fields in a fraction of a second.\",\"PeriodicalId\":342642,\"journal\":{\"name\":\"The American Statistician\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American Statistician\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2023.2249522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Statistician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00031305.2023.2249522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

神经点估计器是将数据映射到参数点估计的神经网络。它们是快速的、无似然的,并且由于它们的平摊性质,适于快速的基于自引导的不确定性量化。在本文中,我们的目标是提高统计学家对这个相对较新的推理工具的认识,并通过提供用户友好的开源软件来促进其采用。我们还关注了从复制数据中进行推理的普遍问题,我们使用置换不变神经网络在神经设置中解决了这个问题。通过广泛的仿真研究,我们表明这些神经点估计器可以相对容易地快速和最优地(在贝叶斯意义上)估计弱识别和高参数化模型中的参数。我们通过对红海极端海面温度的分析证明了它们的适用性,在那里,经过训练,我们在几分之一秒内从数百个空间场获得参数估计和基于bootstrap的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Neural point estimators are neural networks that map data to parameter point estimates. They are fast, likelihood free and, due to their amortised nature, amenable to fast bootstrap-based uncertainty quantification. In this paper, we aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software. We also give attention to the ubiquitous problem of making inference from replicated data, which we address in the neural setting using permutation-invariant neural networks. Through extensive simulation studies we show that these neural point estimators can quickly and optimally (in a Bayes sense) estimate parameters in weakly-identified and highly-parameterised models with relative ease. We demonstrate their applicability through an analysis of extreme sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates and bootstrap-based confidence intervals from hundreds of spatial fields in a fraction of a second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信