数字控制的铝薄膜MEMS谐振镜

Konsta Ruotsalainen, D. Morits, O. Ylivaara, J. Kyynäräinen
{"title":"数字控制的铝薄膜MEMS谐振镜","authors":"Konsta Ruotsalainen, D. Morits, O. Ylivaara, J. Kyynäräinen","doi":"10.1117/1.JOM.2.1.011006","DOIUrl":null,"url":null,"abstract":"Abstract. Piezoelectrically actuated resonant micromirrors were designed to meet the light detection and ranging (LiDAR) system requirements. Key features were a 3-mm mirror aperture, a 40-deg field of view, and a 50-Hz refresh rate. The presented micromirror provides biaxial symmetrical beam steering with ±12.7  deg mechanical tilt angle, resulting in a 50-deg field of view with an adjustable Lissajous XY-scanning pattern for a forward-looking LiDAR system. The mirrors were fabricated using silicon on insulator wafers, and actuation was based on piezoelectric aluminium nitride thin film. The mirrors were vacuum packaged for high-quality factor resonator operation. The device design contained eight separate piezoelectric aluminium nitride elements arranged as differential pairs for each axis, where each actuator was equipped with a sensing element providing a mechanically coupled electrical feedback signal. The piezoelectric elements connected as actuators required only minimal power and were directly compatible with CMOS low-voltage logic, which eases integration to driving digital systems. The sense elements are used to monitor phase, amplitude, and frequency. A digital control system connected to each of these elements provides accurate frequency and phase control of independent orthogonal resonators, permitting control of the X and Y amplitudes and the refresh rate of the Lissajous pattern.","PeriodicalId":127363,"journal":{"name":"Journal of Optical Microsystems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Resonating AlN-thin film MEMS mirror with digital control\",\"authors\":\"Konsta Ruotsalainen, D. Morits, O. Ylivaara, J. Kyynäräinen\",\"doi\":\"10.1117/1.JOM.2.1.011006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Piezoelectrically actuated resonant micromirrors were designed to meet the light detection and ranging (LiDAR) system requirements. Key features were a 3-mm mirror aperture, a 40-deg field of view, and a 50-Hz refresh rate. The presented micromirror provides biaxial symmetrical beam steering with ±12.7  deg mechanical tilt angle, resulting in a 50-deg field of view with an adjustable Lissajous XY-scanning pattern for a forward-looking LiDAR system. The mirrors were fabricated using silicon on insulator wafers, and actuation was based on piezoelectric aluminium nitride thin film. The mirrors were vacuum packaged for high-quality factor resonator operation. The device design contained eight separate piezoelectric aluminium nitride elements arranged as differential pairs for each axis, where each actuator was equipped with a sensing element providing a mechanically coupled electrical feedback signal. The piezoelectric elements connected as actuators required only minimal power and were directly compatible with CMOS low-voltage logic, which eases integration to driving digital systems. The sense elements are used to monitor phase, amplitude, and frequency. A digital control system connected to each of these elements provides accurate frequency and phase control of independent orthogonal resonators, permitting control of the X and Y amplitudes and the refresh rate of the Lissajous pattern.\",\"PeriodicalId\":127363,\"journal\":{\"name\":\"Journal of Optical Microsystems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JOM.2.1.011006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JOM.2.1.011006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要为满足激光雷达(LiDAR)系统的要求,设计了压电驱动谐振微镜。主要特点是3毫米的反射光圈,40度的视野,50赫兹的刷新率。该微镜提供了±12.7度机械倾斜角的双轴对称光束转向,为前视激光雷达系统提供了50度的视野,具有可调的Lissajous xy扫描模式。该反射镜采用硅片作为绝缘体,并基于压电氮化铝薄膜驱动。这些反射镜是真空封装的,用于高质量的因数谐振器操作。该装置设计包含8个独立的压电氮化铝元件,作为每个轴的差分对,其中每个执行器都配备了一个传感元件,提供机械耦合的电反馈信号。作为致动器的压电元件只需要最小的功率,并且与CMOS低压逻辑直接兼容,易于集成以驱动数字系统。感测元件用于监测相位、幅度和频率。连接到每个元件的数字控制系统提供独立正交谐振器的精确频率和相位控制,允许控制X和Y振幅以及利萨朱模式的刷新率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonating AlN-thin film MEMS mirror with digital control
Abstract. Piezoelectrically actuated resonant micromirrors were designed to meet the light detection and ranging (LiDAR) system requirements. Key features were a 3-mm mirror aperture, a 40-deg field of view, and a 50-Hz refresh rate. The presented micromirror provides biaxial symmetrical beam steering with ±12.7  deg mechanical tilt angle, resulting in a 50-deg field of view with an adjustable Lissajous XY-scanning pattern for a forward-looking LiDAR system. The mirrors were fabricated using silicon on insulator wafers, and actuation was based on piezoelectric aluminium nitride thin film. The mirrors were vacuum packaged for high-quality factor resonator operation. The device design contained eight separate piezoelectric aluminium nitride elements arranged as differential pairs for each axis, where each actuator was equipped with a sensing element providing a mechanically coupled electrical feedback signal. The piezoelectric elements connected as actuators required only minimal power and were directly compatible with CMOS low-voltage logic, which eases integration to driving digital systems. The sense elements are used to monitor phase, amplitude, and frequency. A digital control system connected to each of these elements provides accurate frequency and phase control of independent orthogonal resonators, permitting control of the X and Y amplitudes and the refresh rate of the Lissajous pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信