半参数检测的变化点在位置,规模,和copula

Gaurav Agarwal, I. Eckley, P. Fearnhead
{"title":"半参数检测的变化点在位置,规模,和copula","authors":"Gaurav Agarwal, I. Eckley, P. Fearnhead","doi":"10.1002/sam.11622","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method to detect changepoints in the location and scale of univariate data sequences. The proposed method assumes that the data belong to the location‐scale family of distributions and estimate the associated densities nonparametrically. Specifically, the approach does not require knowledge of the functional form of the distribution of the data sequence. As such, the approach can detect changepoints in many distributions. We also propose a new method to detect changes in the location of multivariate sequences, using the marginals and a copula to capture the dependence between variables without the influence of marginal distributions. The performance of the proposed semiparametric approach is contrasted against both other competing nonparametric and Gaussian methods, via simulation studies, as well as applications arising from health and finance.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric detection of changepoints in location, scale, and copula\",\"authors\":\"Gaurav Agarwal, I. Eckley, P. Fearnhead\",\"doi\":\"10.1002/sam.11622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method to detect changepoints in the location and scale of univariate data sequences. The proposed method assumes that the data belong to the location‐scale family of distributions and estimate the associated densities nonparametrically. Specifically, the approach does not require knowledge of the functional form of the distribution of the data sequence. As such, the approach can detect changepoints in many distributions. We also propose a new method to detect changes in the location of multivariate sequences, using the marginals and a copula to capture the dependence between variables without the influence of marginal distributions. The performance of the proposed semiparametric approach is contrasted against both other competing nonparametric and Gaussian methods, via simulation studies, as well as applications arising from health and finance.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种检测单变量数据序列位置和尺度变化点的新方法。该方法假设数据属于位置尺度分布族,并对相关密度进行非参数估计。具体来说,该方法不需要了解数据序列分布的函数形式。因此,该方法可以检测许多发行版中的变更点。我们还提出了一种新的方法来检测多变量序列的位置变化,该方法利用边际和联结来捕捉变量之间的相关性,而不受边际分布的影响。通过仿真研究以及健康和金融领域的应用,将所提出的半参数方法的性能与其他竞争的非参数方法和高斯方法进行了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiparametric detection of changepoints in location, scale, and copula
This paper proposes a new method to detect changepoints in the location and scale of univariate data sequences. The proposed method assumes that the data belong to the location‐scale family of distributions and estimate the associated densities nonparametrically. Specifically, the approach does not require knowledge of the functional form of the distribution of the data sequence. As such, the approach can detect changepoints in many distributions. We also propose a new method to detect changes in the location of multivariate sequences, using the marginals and a copula to capture the dependence between variables without the influence of marginal distributions. The performance of the proposed semiparametric approach is contrasted against both other competing nonparametric and Gaussian methods, via simulation studies, as well as applications arising from health and finance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信