基于MATLAB环境的图像分割技术综述

Awf Abdulrahman, Serkan Varol
{"title":"基于MATLAB环境的图像分割技术综述","authors":"Awf Abdulrahman, Serkan Varol","doi":"10.1109/ISDFS49300.2020.9116191","DOIUrl":null,"url":null,"abstract":"Image segmentation is of great importance in understanding and analysing objects within images. The process involves dividing vague images into meaningful and useful ones by segmenting them and subsequently evaluating them based on colour density. This process is used in the medical, cultural and industrial fields, among others. There are many functions used in image segmentation, including edge and threshold functions. This paper will review these techniques, provide examples, and illustrate the types of applicable images.","PeriodicalId":221494,"journal":{"name":"2020 8th International Symposium on Digital Forensics and Security (ISDFS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Review of Image Segmentation Using MATLAB Environment\",\"authors\":\"Awf Abdulrahman, Serkan Varol\",\"doi\":\"10.1109/ISDFS49300.2020.9116191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is of great importance in understanding and analysing objects within images. The process involves dividing vague images into meaningful and useful ones by segmenting them and subsequently evaluating them based on colour density. This process is used in the medical, cultural and industrial fields, among others. There are many functions used in image segmentation, including edge and threshold functions. This paper will review these techniques, provide examples, and illustrate the types of applicable images.\",\"PeriodicalId\":221494,\"journal\":{\"name\":\"2020 8th International Symposium on Digital Forensics and Security (ISDFS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Symposium on Digital Forensics and Security (ISDFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDFS49300.2020.9116191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS49300.2020.9116191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

图像分割对于理解和分析图像中的目标具有重要意义。这个过程包括将模糊的图像分割成有意义的和有用的图像,然后根据颜色密度对它们进行评估。这一过程被用于医疗、文化和工业等领域。在图像分割中有很多函数,包括边缘函数和阈值函数。本文将回顾这些技术,提供示例,并说明适用的图像类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Image Segmentation Using MATLAB Environment
Image segmentation is of great importance in understanding and analysing objects within images. The process involves dividing vague images into meaningful and useful ones by segmenting them and subsequently evaluating them based on colour density. This process is used in the medical, cultural and industrial fields, among others. There are many functions used in image segmentation, including edge and threshold functions. This paper will review these techniques, provide examples, and illustrate the types of applicable images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信