从图像对中提取风格用于全局正、逆色调映射

Aamir Mustafa, Param Hanji, Rafał K. Mantiuk
{"title":"从图像对中提取风格用于全局正、逆色调映射","authors":"Aamir Mustafa, Param Hanji, Rafał K. Mantiuk","doi":"10.1145/3565516.3565520","DOIUrl":null,"url":null,"abstract":"Many image enhancement or editing operations, such as forward and inverse tone mapping or color grading, do not have a unique solution, but instead a range of solutions, each representing a different style. Despite this, existing learning-based methods attempt to learn a unique mapping, disregarding this style. In this work, we show that information about the style can be distilled from collections of image pairs and encoded into a 2- or 3-dimensional vector. This gives us not only an efficient representation but also an interpretable latent space for editing the image style. We represent the global color mapping between a pair of images as a custom normalizing flow, conditioned on a polynomial basis of the pixel color. We show that such a network is more effective than PCA or VAE at encoding image style in low-dimensional space and lets us obtain an accuracy close to 40 dB, which is about 7-10 dB improvement over the state-of-the-art methods.","PeriodicalId":367303,"journal":{"name":"Proceedings of the 19th ACM SIGGRAPH European Conference on Visual Media Production","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Distilling Style from Image Pairs for Global Forward and Inverse Tone Mapping\",\"authors\":\"Aamir Mustafa, Param Hanji, Rafał K. Mantiuk\",\"doi\":\"10.1145/3565516.3565520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many image enhancement or editing operations, such as forward and inverse tone mapping or color grading, do not have a unique solution, but instead a range of solutions, each representing a different style. Despite this, existing learning-based methods attempt to learn a unique mapping, disregarding this style. In this work, we show that information about the style can be distilled from collections of image pairs and encoded into a 2- or 3-dimensional vector. This gives us not only an efficient representation but also an interpretable latent space for editing the image style. We represent the global color mapping between a pair of images as a custom normalizing flow, conditioned on a polynomial basis of the pixel color. We show that such a network is more effective than PCA or VAE at encoding image style in low-dimensional space and lets us obtain an accuracy close to 40 dB, which is about 7-10 dB improvement over the state-of-the-art methods.\",\"PeriodicalId\":367303,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGGRAPH European Conference on Visual Media Production\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGGRAPH European Conference on Visual Media Production\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3565516.3565520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGGRAPH European Conference on Visual Media Production","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3565516.3565520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

许多图像增强或编辑操作,如正向和反向色调映射或色彩分级,没有唯一的解决方案,而是一系列解决方案,每个解决方案代表不同的风格。尽管如此,现有的基于学习的方法试图学习一个独特的映射,而忽略了这种风格。在这项工作中,我们展示了关于风格的信息可以从图像对的集合中提取出来,并编码成二维或三维向量。这不仅为我们提供了一个有效的表示,而且为编辑图像样式提供了一个可解释的潜在空间。我们将一对图像之间的全局颜色映射表示为自定义归一化流,以像素颜色的多项式为基础。我们表明,这种网络在低维空间编码图像风格时比PCA或VAE更有效,并使我们获得接近40 dB的精度,比最先进的方法提高了约7-10 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distilling Style from Image Pairs for Global Forward and Inverse Tone Mapping
Many image enhancement or editing operations, such as forward and inverse tone mapping or color grading, do not have a unique solution, but instead a range of solutions, each representing a different style. Despite this, existing learning-based methods attempt to learn a unique mapping, disregarding this style. In this work, we show that information about the style can be distilled from collections of image pairs and encoded into a 2- or 3-dimensional vector. This gives us not only an efficient representation but also an interpretable latent space for editing the image style. We represent the global color mapping between a pair of images as a custom normalizing flow, conditioned on a polynomial basis of the pixel color. We show that such a network is more effective than PCA or VAE at encoding image style in low-dimensional space and lets us obtain an accuracy close to 40 dB, which is about 7-10 dB improvement over the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信