并发缓存

Jay Nelson
{"title":"并发缓存","authors":"Jay Nelson","doi":"10.1145/1159789.1159797","DOIUrl":null,"url":null,"abstract":"A concurrent cache design is presented which allows cached data to be spread across a cluster of computers. The implementation separates persistent storage from cache storage and abstracts the cache behaviour so that the user can experiment with cache size and replacement policy to optimize performance for a given system, even if the production data store is not available. Using processes to implement cached objects allows for runtime configurability and adaptive use policies as well as parallelization to optimize resource access efficiency.","PeriodicalId":140676,"journal":{"name":"Erlang Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Concurrent caching\",\"authors\":\"Jay Nelson\",\"doi\":\"10.1145/1159789.1159797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A concurrent cache design is presented which allows cached data to be spread across a cluster of computers. The implementation separates persistent storage from cache storage and abstracts the cache behaviour so that the user can experiment with cache size and replacement policy to optimize performance for a given system, even if the production data store is not available. Using processes to implement cached objects allows for runtime configurability and adaptive use policies as well as parallelization to optimize resource access efficiency.\",\"PeriodicalId\":140676,\"journal\":{\"name\":\"Erlang Workshop\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Erlang Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1159789.1159797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Erlang Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1159789.1159797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种并发缓存设计,它允许缓存的数据在计算机集群中分布。该实现将持久存储与缓存存储分离,并抽象缓存行为,以便用户可以试验缓存大小和替换策略,以优化给定系统的性能,即使生产数据存储不可用。使用进程实现缓存对象允许运行时可配置性和自适应使用策略,以及并行化以优化资源访问效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent caching
A concurrent cache design is presented which allows cached data to be spread across a cluster of computers. The implementation separates persistent storage from cache storage and abstracts the cache behaviour so that the user can experiment with cache size and replacement policy to optimize performance for a given system, even if the production data store is not available. Using processes to implement cached objects allows for runtime configurability and adaptive use policies as well as parallelization to optimize resource access efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信