一种基于数据驱动分割的通用广播监控音频识别系统

H. Khemiri, D. Petrovska-Delacrétaz, G. Chollet
{"title":"一种基于数据驱动分割的通用广播监控音频识别系统","authors":"H. Khemiri, D. Petrovska-Delacrétaz, G. Chollet","doi":"10.1109/ISM.2012.87","DOIUrl":null,"url":null,"abstract":"In this paper, a generic audio identification system is introduced to identify advertisements and songs in radio broadcast streams using automatically acquired segmental units. A new fingerprinting method based on ALISP data-driven segmentation is presented. A modified BLAST algorithm is also proposed for fast and approximate matching of ALISP sequences. To detect commercials and songs, ALISP transcriptions of references composed of large library of commercials and songs, are compared to the transcriptions of the test radio stream using Levenshtein distance. The system is described and evaluated on broadcast audio streams from 12 French radio stations. For advertisement identification, a mean precision rate of 100% with the corresponding recall value of 98% were achieved. For music identification, a mean precision rate of 100% with the corresponding recall value of 95% were achieved.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Generic Audio Identification System for Radio Broadcast Monitoring Based on Data-Driven Segmentation\",\"authors\":\"H. Khemiri, D. Petrovska-Delacrétaz, G. Chollet\",\"doi\":\"10.1109/ISM.2012.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a generic audio identification system is introduced to identify advertisements and songs in radio broadcast streams using automatically acquired segmental units. A new fingerprinting method based on ALISP data-driven segmentation is presented. A modified BLAST algorithm is also proposed for fast and approximate matching of ALISP sequences. To detect commercials and songs, ALISP transcriptions of references composed of large library of commercials and songs, are compared to the transcriptions of the test radio stream using Levenshtein distance. The system is described and evaluated on broadcast audio streams from 12 French radio stations. For advertisement identification, a mean precision rate of 100% with the corresponding recall value of 98% were achieved. For music identification, a mean precision rate of 100% with the corresponding recall value of 95% were achieved.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种通用的音频识别系统,利用自动获取的片段单元对广播流中的广告和歌曲进行识别。提出了一种基于ALISP数据驱动分割的指纹识别新方法。提出了一种改进的BLAST算法,用于快速近似匹配ALISP序列。为了检测商业广告和歌曲,使用Levenshtein距离将由大型商业广告和歌曲库组成的参考文献的ALISP转录与测试无线电流的转录进行比较。对该系统进行了描述,并对来自12个法国广播电台的广播音频流进行了评估。广告识别的平均准确率为100%,召回率为98%。音乐识别的平均准确率为100%,召回率为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generic Audio Identification System for Radio Broadcast Monitoring Based on Data-Driven Segmentation
In this paper, a generic audio identification system is introduced to identify advertisements and songs in radio broadcast streams using automatically acquired segmental units. A new fingerprinting method based on ALISP data-driven segmentation is presented. A modified BLAST algorithm is also proposed for fast and approximate matching of ALISP sequences. To detect commercials and songs, ALISP transcriptions of references composed of large library of commercials and songs, are compared to the transcriptions of the test radio stream using Levenshtein distance. The system is described and evaluated on broadcast audio streams from 12 French radio stations. For advertisement identification, a mean precision rate of 100% with the corresponding recall value of 98% were achieved. For music identification, a mean precision rate of 100% with the corresponding recall value of 95% were achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信