最大互信息对数似然比的量化

A. Winkelbauer, G. Matz
{"title":"最大互信息对数似然比的量化","authors":"A. Winkelbauer, G. Matz","doi":"10.1109/SPAWC.2015.7227051","DOIUrl":null,"url":null,"abstract":"We consider mutual-information-optimal quantization of log-likelihood ratios (LLRs). An efficient algorithm is presented for the design of LLR quantizers based either on the unconditional LLR distribution or on LLR samples. In the latter case, a small number of samples is sufficient and no training data are required. Therefore, our algorithm can be used to design LLR quantizers during data transmission. The proposed algorithm is reminiscent of the famous Lloyd-Max algorithm and is not restricted to any particular LLR distribution.","PeriodicalId":211324,"journal":{"name":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"On quantization of log-likelihood ratios for maximum mutual information\",\"authors\":\"A. Winkelbauer, G. Matz\",\"doi\":\"10.1109/SPAWC.2015.7227051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider mutual-information-optimal quantization of log-likelihood ratios (LLRs). An efficient algorithm is presented for the design of LLR quantizers based either on the unconditional LLR distribution or on LLR samples. In the latter case, a small number of samples is sufficient and no training data are required. Therefore, our algorithm can be used to design LLR quantizers during data transmission. The proposed algorithm is reminiscent of the famous Lloyd-Max algorithm and is not restricted to any particular LLR distribution.\",\"PeriodicalId\":211324,\"journal\":{\"name\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2015.7227051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2015.7227051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们考虑对数似然比(LLRs)的互信息最优量化。提出了一种基于无条件LLR分布和基于LLR样本的LLR量化器设计的有效算法。在后一种情况下,少量的样本就足够了,不需要训练数据。因此,我们的算法可以用于设计数据传输过程中的LLR量化器。该算法使人联想到著名的Lloyd-Max算法,并且不局限于任何特定的LLR分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On quantization of log-likelihood ratios for maximum mutual information
We consider mutual-information-optimal quantization of log-likelihood ratios (LLRs). An efficient algorithm is presented for the design of LLR quantizers based either on the unconditional LLR distribution or on LLR samples. In the latter case, a small number of samples is sufficient and no training data are required. Therefore, our algorithm can be used to design LLR quantizers during data transmission. The proposed algorithm is reminiscent of the famous Lloyd-Max algorithm and is not restricted to any particular LLR distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信