A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty
{"title":"大规模实时系统自动故障缓解策略的验证","authors":"A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty","doi":"10.1109/EASE.2006.24","DOIUrl":null,"url":null,"abstract":"In large scale real-time systems many problems associated with self-management are exacerbated by the addition of time deadlines. In these systems any autonomic behavior must not only be functionally correct but they must also not violate properties of liveness, safety and bounded time responsiveness. In this paper we present and analyze a realtime reflex engine for providing fault mitigation capability to large scale real time systems. We also present a semantic domain for analyzing and verifying the properties of such systems along with the framework of real-time reflex engines","PeriodicalId":202442,"journal":{"name":"Third IEEE International Workshop on Engineering of Autonomic & Autonomous Systems (EASE'06)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Verifying Autonomic Fault Mitigation Strategies in Large Scale Real-Time Systems\",\"authors\":\"A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty\",\"doi\":\"10.1109/EASE.2006.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large scale real-time systems many problems associated with self-management are exacerbated by the addition of time deadlines. In these systems any autonomic behavior must not only be functionally correct but they must also not violate properties of liveness, safety and bounded time responsiveness. In this paper we present and analyze a realtime reflex engine for providing fault mitigation capability to large scale real time systems. We also present a semantic domain for analyzing and verifying the properties of such systems along with the framework of real-time reflex engines\",\"PeriodicalId\":202442,\"journal\":{\"name\":\"Third IEEE International Workshop on Engineering of Autonomic & Autonomous Systems (EASE'06)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE International Workshop on Engineering of Autonomic & Autonomous Systems (EASE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EASE.2006.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE International Workshop on Engineering of Autonomic & Autonomous Systems (EASE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EASE.2006.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Verifying Autonomic Fault Mitigation Strategies in Large Scale Real-Time Systems
In large scale real-time systems many problems associated with self-management are exacerbated by the addition of time deadlines. In these systems any autonomic behavior must not only be functionally correct but they must also not violate properties of liveness, safety and bounded time responsiveness. In this paper we present and analyze a realtime reflex engine for providing fault mitigation capability to large scale real time systems. We also present a semantic domain for analyzing and verifying the properties of such systems along with the framework of real-time reflex engines