多目标进化算法NSGA-II用于多变量标定问题的变量选择

Daniel Victor de Lucena, T. W. Lima, A. S. Soares, C. Coelho
{"title":"多目标进化算法NSGA-II用于多变量标定问题的变量选择","authors":"Daniel Victor de Lucena, T. W. Lima, A. S. Soares, C. Coelho","doi":"10.4018/jncr.2012100103","DOIUrl":null,"url":null,"abstract":"This paper proposes a multiobjective formulation for variable selection in multivariate calibration problems in order to improve the generalization ability of the calibration model. The authors applied this proposed formulation in the multiobjective genetic algorithm NSGA-II. The formulation consists in two conflicting objectives: minimize the prediction error and minimize the number of selected variables for multiple linear regression. These objectives are conflicting because, when the number of variables is reduced the prediction error increases. As study of case is used the wheat data set obtained by NIR spectrometry with the objective for determining a variable subgroup with information about protein concentration. The results of traditional techniques of multivariate calibration as the partial least square and successive projection algorithm for multiple linear regression are presented for comparisons. The obtained results showed that the proposed approach obtained better results when compared with a mono-objective evolutionary algorithm and with traditional techniques of multivariate calibration.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multi-Objective Evolutionary Algorithm NSGA-II for Variables Selection in Multivariate Calibration Problems\",\"authors\":\"Daniel Victor de Lucena, T. W. Lima, A. S. Soares, C. Coelho\",\"doi\":\"10.4018/jncr.2012100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multiobjective formulation for variable selection in multivariate calibration problems in order to improve the generalization ability of the calibration model. The authors applied this proposed formulation in the multiobjective genetic algorithm NSGA-II. The formulation consists in two conflicting objectives: minimize the prediction error and minimize the number of selected variables for multiple linear regression. These objectives are conflicting because, when the number of variables is reduced the prediction error increases. As study of case is used the wheat data set obtained by NIR spectrometry with the objective for determining a variable subgroup with information about protein concentration. The results of traditional techniques of multivariate calibration as the partial least square and successive projection algorithm for multiple linear regression are presented for comparisons. The obtained results showed that the proposed approach obtained better results when compared with a mono-objective evolutionary algorithm and with traditional techniques of multivariate calibration.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jncr.2012100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jncr.2012100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为了提高标定模型的泛化能力,提出了一种多目标变量选择公式。作者将该公式应用于多目标遗传算法NSGA-II。该公式包含两个相互冲突的目标:最小化预测误差和最小化多元线性回归所选变量的数量。这些目标是相互冲突的,因为当变量数量减少时,预测误差就会增加。本研究采用近红外光谱法获得的小麦数据集,目的是确定含有蛋白质浓度信息的可变亚群。对多元线性回归的偏最小二乘法和逐次投影法等传统的多变量标定方法进行了比较。结果表明,与单目标进化算法和传统的多变量标定技术相比,该方法获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Evolutionary Algorithm NSGA-II for Variables Selection in Multivariate Calibration Problems
This paper proposes a multiobjective formulation for variable selection in multivariate calibration problems in order to improve the generalization ability of the calibration model. The authors applied this proposed formulation in the multiobjective genetic algorithm NSGA-II. The formulation consists in two conflicting objectives: minimize the prediction error and minimize the number of selected variables for multiple linear regression. These objectives are conflicting because, when the number of variables is reduced the prediction error increases. As study of case is used the wheat data set obtained by NIR spectrometry with the objective for determining a variable subgroup with information about protein concentration. The results of traditional techniques of multivariate calibration as the partial least square and successive projection algorithm for multiple linear regression are presented for comparisons. The obtained results showed that the proposed approach obtained better results when compared with a mono-objective evolutionary algorithm and with traditional techniques of multivariate calibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信