基于自适应主成分分析的重要性抽样

J. Rosell, Luis Cruz, R. Suárez, Alexander Pérez
{"title":"基于自适应主成分分析的重要性抽样","authors":"J. Rosell, Luis Cruz, R. Suárez, Alexander Pérez","doi":"10.1109/ISAM.2011.5942315","DOIUrl":null,"url":null,"abstract":"Sampling-based approaches are currently the most efficient ones to solve path planning problems, being their performance dependant on the ability to generate samples in those areas of the configuration space relevant to the problem. This paper introduces a novel importance sampling method that uses Principal Component Analysis to focalize the region where to sample in order to increase the probability of finding collision-free configurations. The proposal is illustrated with a 2D configuration space with a narrow passage and compared to the uniform random sampling method.","PeriodicalId":273573,"journal":{"name":"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Importance sampling based on adaptive principal component analysis\",\"authors\":\"J. Rosell, Luis Cruz, R. Suárez, Alexander Pérez\",\"doi\":\"10.1109/ISAM.2011.5942315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sampling-based approaches are currently the most efficient ones to solve path planning problems, being their performance dependant on the ability to generate samples in those areas of the configuration space relevant to the problem. This paper introduces a novel importance sampling method that uses Principal Component Analysis to focalize the region where to sample in order to increase the probability of finding collision-free configurations. The proposal is illustrated with a 2D configuration space with a narrow passage and compared to the uniform random sampling method.\",\"PeriodicalId\":273573,\"journal\":{\"name\":\"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAM.2011.5942315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Assembly and Manufacturing (ISAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAM.2011.5942315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于采样的方法是目前解决路径规划问题最有效的方法,因为它们的性能依赖于在与问题相关的配置空间的那些区域生成样本的能力。本文提出了一种新的重要采样方法,利用主成分分析对采样区域进行聚焦,以提高发现无碰撞构型的概率。用窄通道二维构型空间进行了说明,并与均匀随机抽样方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Importance sampling based on adaptive principal component analysis
Sampling-based approaches are currently the most efficient ones to solve path planning problems, being their performance dependant on the ability to generate samples in those areas of the configuration space relevant to the problem. This paper introduces a novel importance sampling method that uses Principal Component Analysis to focalize the region where to sample in order to increase the probability of finding collision-free configurations. The proposal is illustrated with a 2D configuration space with a narrow passage and compared to the uniform random sampling method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信