{"title":"电磁转换能源管理","authors":"Eduardo Torres-Sánchez","doi":"10.5772/INTECHOPEN.85420","DOIUrl":null,"url":null,"abstract":"The global society has the responsibility to concern about environmental impact for energy purposes by replacing existing coal and hydrocarbon methods by sustainable and efficient energy systems. Hence, current power generation systems are bounded by the physical laws that tend to decrease the performance by converting most of the energy into heat. Likewise, the revolution and massive implementation of renewable energies around the world have demonstrated that the electromagnetic transduction presents a viable option to harness the induced mechanical energy provided by either wind or water into exergy. The exergy focuses on the efficiency of the second law of thermodynamics with the purpose to ensure availability and quality of energy within energetic management systems. Thereby, it is necessary to decrease the energy demand by making very efficient power-consuming devices and increasing the quality of energy with performed output power generation systems. This chapter addresses a single diagram to develop models and novel designs for power generation with the aim to develop variable efficiency power systems. Furthermore, an analysis is addressed on magnetism, electromagnetic induction, and magnetic materials to design, optimize, and imple-ment into current power cycles.","PeriodicalId":412459,"journal":{"name":"Exergy and Its Application - Toward Green Energy Production and Sustainable Environment","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Management through Electromagnetic Conversion\",\"authors\":\"Eduardo Torres-Sánchez\",\"doi\":\"10.5772/INTECHOPEN.85420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global society has the responsibility to concern about environmental impact for energy purposes by replacing existing coal and hydrocarbon methods by sustainable and efficient energy systems. Hence, current power generation systems are bounded by the physical laws that tend to decrease the performance by converting most of the energy into heat. Likewise, the revolution and massive implementation of renewable energies around the world have demonstrated that the electromagnetic transduction presents a viable option to harness the induced mechanical energy provided by either wind or water into exergy. The exergy focuses on the efficiency of the second law of thermodynamics with the purpose to ensure availability and quality of energy within energetic management systems. Thereby, it is necessary to decrease the energy demand by making very efficient power-consuming devices and increasing the quality of energy with performed output power generation systems. This chapter addresses a single diagram to develop models and novel designs for power generation with the aim to develop variable efficiency power systems. Furthermore, an analysis is addressed on magnetism, electromagnetic induction, and magnetic materials to design, optimize, and imple-ment into current power cycles.\",\"PeriodicalId\":412459,\"journal\":{\"name\":\"Exergy and Its Application - Toward Green Energy Production and Sustainable Environment\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exergy and Its Application - Toward Green Energy Production and Sustainable Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.85420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy and Its Application - Toward Green Energy Production and Sustainable Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy Management through Electromagnetic Conversion
The global society has the responsibility to concern about environmental impact for energy purposes by replacing existing coal and hydrocarbon methods by sustainable and efficient energy systems. Hence, current power generation systems are bounded by the physical laws that tend to decrease the performance by converting most of the energy into heat. Likewise, the revolution and massive implementation of renewable energies around the world have demonstrated that the electromagnetic transduction presents a viable option to harness the induced mechanical energy provided by either wind or water into exergy. The exergy focuses on the efficiency of the second law of thermodynamics with the purpose to ensure availability and quality of energy within energetic management systems. Thereby, it is necessary to decrease the energy demand by making very efficient power-consuming devices and increasing the quality of energy with performed output power generation systems. This chapter addresses a single diagram to develop models and novel designs for power generation with the aim to develop variable efficiency power systems. Furthermore, an analysis is addressed on magnetism, electromagnetic induction, and magnetic materials to design, optimize, and imple-ment into current power cycles.