利用SIS检测Android平台的恶意软件模式

Farrakh Nazir, Muhammad U. S. Khan, Neeli Khan, Ahmad Fayyaz
{"title":"利用SIS检测Android平台的恶意软件模式","authors":"Farrakh Nazir, Muhammad U. S. Khan, Neeli Khan, Ahmad Fayyaz","doi":"10.1109/IMCERT57083.2023.10075203","DOIUrl":null,"url":null,"abstract":"Smartphones are now inseparable part of our reality. Several machine learning algorithms exist for detection of malwares in android applications; however, these techniques fail to rationalize specific decisions made by a “Black Box” therefore lacking explain-ability. To overcome this limitation, Sufficient Input Subset (SIS) technique is used along with convolutional neural network (CNN). SIS categorizes minimal subsets of features who's observed values alone be sufficient for the same verdict to be reached. The results of the proposed technique are very promising., where its detection accuracy reached more than 90% and we are able to rationalize why the Black box classified a file as malware.","PeriodicalId":201596,"journal":{"name":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining Malware Patterns in Android Platform using Sufficient Input Subset (SIS)\",\"authors\":\"Farrakh Nazir, Muhammad U. S. Khan, Neeli Khan, Ahmad Fayyaz\",\"doi\":\"10.1109/IMCERT57083.2023.10075203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones are now inseparable part of our reality. Several machine learning algorithms exist for detection of malwares in android applications; however, these techniques fail to rationalize specific decisions made by a “Black Box” therefore lacking explain-ability. To overcome this limitation, Sufficient Input Subset (SIS) technique is used along with convolutional neural network (CNN). SIS categorizes minimal subsets of features who's observed values alone be sufficient for the same verdict to be reached. The results of the proposed technique are very promising., where its detection accuracy reached more than 90% and we are able to rationalize why the Black box classified a file as malware.\",\"PeriodicalId\":201596,\"journal\":{\"name\":\"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCERT57083.2023.10075203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCERT57083.2023.10075203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能手机现在是我们现实生活中不可分割的一部分。存在几种机器学习算法用于检测android应用程序中的恶意软件;然而,这些技术无法使“黑盒”做出的特定决策合理化,因此缺乏可解释性。为了克服这一限制,将充分输入子集(SIS)技术与卷积神经网络(CNN)结合使用。SIS对特征的最小子集进行分类,这些特征的观测值足以得出相同的结论。所提出的技术的结果非常有希望。,它的检测准确率达到90%以上,我们能够解释为什么黑匣子将文件归类为恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining Malware Patterns in Android Platform using Sufficient Input Subset (SIS)
Smartphones are now inseparable part of our reality. Several machine learning algorithms exist for detection of malwares in android applications; however, these techniques fail to rationalize specific decisions made by a “Black Box” therefore lacking explain-ability. To overcome this limitation, Sufficient Input Subset (SIS) technique is used along with convolutional neural network (CNN). SIS categorizes minimal subsets of features who's observed values alone be sufficient for the same verdict to be reached. The results of the proposed technique are very promising., where its detection accuracy reached more than 90% and we are able to rationalize why the Black box classified a file as malware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信