{"title":"并行体绘制和数据一致性","authors":"B. Corrie, P. Mackerras","doi":"10.1145/166181.166184","DOIUrl":null,"url":null,"abstract":"The two key issues in implementing a parallel ray-casting volume renderer are the work distribution and the data distribution. We have implemented such a renderer on the Fujitsu AP1000 using an adaptive image-space subdivision algorithm based on the worker-farm paradigm for the work distribution, and a distributed virtual memory, implemented in software, to provide the data distribution. Measurements show that this scheme works efficiently and effectively utilizes the data coherence that is inherent in volume data.","PeriodicalId":394370,"journal":{"name":"Proceedings of 1993 IEEE Parallel Rendering Symposium","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Parallel volume rendering and data coherence\",\"authors\":\"B. Corrie, P. Mackerras\",\"doi\":\"10.1145/166181.166184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two key issues in implementing a parallel ray-casting volume renderer are the work distribution and the data distribution. We have implemented such a renderer on the Fujitsu AP1000 using an adaptive image-space subdivision algorithm based on the worker-farm paradigm for the work distribution, and a distributed virtual memory, implemented in software, to provide the data distribution. Measurements show that this scheme works efficiently and effectively utilizes the data coherence that is inherent in volume data.\",\"PeriodicalId\":394370,\"journal\":{\"name\":\"Proceedings of 1993 IEEE Parallel Rendering Symposium\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE Parallel Rendering Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/166181.166184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE Parallel Rendering Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/166181.166184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The two key issues in implementing a parallel ray-casting volume renderer are the work distribution and the data distribution. We have implemented such a renderer on the Fujitsu AP1000 using an adaptive image-space subdivision algorithm based on the worker-farm paradigm for the work distribution, and a distributed virtual memory, implemented in software, to provide the data distribution. Measurements show that this scheme works efficiently and effectively utilizes the data coherence that is inherent in volume data.