用波动模型研究二维位移系统的BIBO稳定性

Reza Babaloo, M. Rezvani, M. Shafiee
{"title":"用波动模型研究二维位移系统的BIBO稳定性","authors":"Reza Babaloo, M. Rezvani, M. Shafiee","doi":"10.1109/ICCIAUTOM.2013.6912824","DOIUrl":null,"url":null,"abstract":"Stability condition for two dimensional (2-D) shift-varying systems is presented. The form considered in this paper is the Givone-Roesser (G-R) model, which is discrete 2-D state space system. The sufficient condition for BIBO stability is proved. For this proof, Wave model is used. Frist, G-R model is transformed into Wave model and then applied 1-D results on this model.","PeriodicalId":444883,"journal":{"name":"The 3rd International Conference on Control, Instrumentation, and Automation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BIBO stability of shift-varying 2-D systems using wave model\",\"authors\":\"Reza Babaloo, M. Rezvani, M. Shafiee\",\"doi\":\"10.1109/ICCIAUTOM.2013.6912824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability condition for two dimensional (2-D) shift-varying systems is presented. The form considered in this paper is the Givone-Roesser (G-R) model, which is discrete 2-D state space system. The sufficient condition for BIBO stability is proved. For this proof, Wave model is used. Frist, G-R model is transformed into Wave model and then applied 1-D results on this model.\",\"PeriodicalId\":444883,\"journal\":{\"name\":\"The 3rd International Conference on Control, Instrumentation, and Automation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd International Conference on Control, Instrumentation, and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2013.6912824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International Conference on Control, Instrumentation, and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2013.6912824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了二维(2-D)位移变系统的稳定性条件。本文考虑的形式是离散的二维状态空间系统Givone-Roesser (G-R)模型。证明了BIBO稳定的充分条件。为了证明这一点,我们使用了波模型。首先将G-R模型转换为Wave模型,然后将一维结果应用于该模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIBO stability of shift-varying 2-D systems using wave model
Stability condition for two dimensional (2-D) shift-varying systems is presented. The form considered in this paper is the Givone-Roesser (G-R) model, which is discrete 2-D state space system. The sufficient condition for BIBO stability is proved. For this proof, Wave model is used. Frist, G-R model is transformed into Wave model and then applied 1-D results on this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信