{"title":"用于芯片间通信的高速电光互连的功率比较","authors":"Hoyeol Cho, P. Kapur, Krishna C. Saraswat","doi":"10.1109/IITC.2004.1345710","DOIUrl":null,"url":null,"abstract":"Power dissipation between electrical and optical interconnects for high-speed inter-chip communication is compared. A power minimization strategy for optical interconnects is developed and its scaling trends are shown. Optical interconnect when compared with the state-of-the-art electrical interconnect yields lower power beyond a critical length (43cm at 6Gb/s and 100nm technology node). The critical length is fully characterized as a function of system requirements (bit rate and bit-error rate) and interconnect's end-device parameters (detector capacitance, receiver sensitivity and offset). Higher bit rates yield lower critical lengths making optical interconnects more favorable in the future.","PeriodicalId":148010,"journal":{"name":"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Power comparison between high-speed electrical and optical interconnects for inter-chip communication\",\"authors\":\"Hoyeol Cho, P. Kapur, Krishna C. Saraswat\",\"doi\":\"10.1109/IITC.2004.1345710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power dissipation between electrical and optical interconnects for high-speed inter-chip communication is compared. A power minimization strategy for optical interconnects is developed and its scaling trends are shown. Optical interconnect when compared with the state-of-the-art electrical interconnect yields lower power beyond a critical length (43cm at 6Gb/s and 100nm technology node). The critical length is fully characterized as a function of system requirements (bit rate and bit-error rate) and interconnect's end-device parameters (detector capacitance, receiver sensitivity and offset). Higher bit rates yield lower critical lengths making optical interconnects more favorable in the future.\",\"PeriodicalId\":148010,\"journal\":{\"name\":\"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2004.1345710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2004.1345710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power comparison between high-speed electrical and optical interconnects for inter-chip communication
Power dissipation between electrical and optical interconnects for high-speed inter-chip communication is compared. A power minimization strategy for optical interconnects is developed and its scaling trends are shown. Optical interconnect when compared with the state-of-the-art electrical interconnect yields lower power beyond a critical length (43cm at 6Gb/s and 100nm technology node). The critical length is fully characterized as a function of system requirements (bit rate and bit-error rate) and interconnect's end-device parameters (detector capacitance, receiver sensitivity and offset). Higher bit rates yield lower critical lengths making optical interconnects more favorable in the future.