{"title":"局部有限拓扑下超空间2X的紧性","authors":"Meili Zhang, Hongmei Pei, Weili Liu, Yue Yang","doi":"10.1109/ICAA53760.2021.00132","DOIUrl":null,"url":null,"abstract":"Let X be topological space. A vietoris-type topology, called the locally finite topology, is defined on the hyperspace $2^{X}$ of all closed, nonempty subsets of X. In this paper, we discuss compactness of the locally finite topology on hyperspace. And give the important conclusion, therefore this develops E.Micheal, J.Keesling some results.","PeriodicalId":121879,"journal":{"name":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Compactness of the Hyperspace 2X with the Locally Finite Topology\",\"authors\":\"Meili Zhang, Hongmei Pei, Weili Liu, Yue Yang\",\"doi\":\"10.1109/ICAA53760.2021.00132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be topological space. A vietoris-type topology, called the locally finite topology, is defined on the hyperspace $2^{X}$ of all closed, nonempty subsets of X. In this paper, we discuss compactness of the locally finite topology on hyperspace. And give the important conclusion, therefore this develops E.Micheal, J.Keesling some results.\",\"PeriodicalId\":121879,\"journal\":{\"name\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAA53760.2021.00132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA53760.2021.00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Compactness of the Hyperspace 2X with the Locally Finite Topology
Let X be topological space. A vietoris-type topology, called the locally finite topology, is defined on the hyperspace $2^{X}$ of all closed, nonempty subsets of X. In this paper, we discuss compactness of the locally finite topology on hyperspace. And give the important conclusion, therefore this develops E.Micheal, J.Keesling some results.