H.263到H.264的数据挖掘转换

G. Fernández-Escribano, J. Bialkowski, H. Kalva, P. Cuenca, L. Orozco-Barbosa, André Kaup
{"title":"H.263到H.264的数据挖掘转换","authors":"G. Fernández-Escribano, J. Bialkowski, H. Kalva, P. Cuenca, L. Orozco-Barbosa, André Kaup","doi":"10.1109/ICIP.2007.4379959","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the use of data mining algorithms to create a macroblock partition mode decision algorithm for inter-frame prediction, to be used as part of a high-efficient H.263 to H.264 transcoder. We use machine learning tools to exploit the correlation and derive decision trees to classify the incoming H.263 MC residual into one of the several coding modes in H.264. The proposed approach reduces the H.264 MB mode computation process into a decision tree lookup with very low complexity. Experimental results show that the proposed approach reduces the inter-prediction complexity by as much as 60% while maintaining the coding efficiency.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"H.263 to H.264 Transconding using Data Mining\",\"authors\":\"G. Fernández-Escribano, J. Bialkowski, H. Kalva, P. Cuenca, L. Orozco-Barbosa, André Kaup\",\"doi\":\"10.1109/ICIP.2007.4379959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the use of data mining algorithms to create a macroblock partition mode decision algorithm for inter-frame prediction, to be used as part of a high-efficient H.263 to H.264 transcoder. We use machine learning tools to exploit the correlation and derive decision trees to classify the incoming H.263 MC residual into one of the several coding modes in H.264. The proposed approach reduces the H.264 MB mode computation process into a decision tree lookup with very low complexity. Experimental results show that the proposed approach reduces the inter-prediction complexity by as much as 60% while maintaining the coding efficiency.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出使用数据挖掘算法来创建用于帧间预测的宏块划分模式决策算法,作为高效的H.263到H.264转码器的一部分。我们使用机器学习工具利用相关性并推导决策树,将传入的H.263 MC残差分类为H.264中的几种编码模式之一。该方法将H.264 MB模式的计算过程简化为一个非常低复杂度的决策树查找过程。实验结果表明,该方法在保持编码效率的前提下,将预测复杂度降低了60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H.263 to H.264 Transconding using Data Mining
In this paper, we propose the use of data mining algorithms to create a macroblock partition mode decision algorithm for inter-frame prediction, to be used as part of a high-efficient H.263 to H.264 transcoder. We use machine learning tools to exploit the correlation and derive decision trees to classify the incoming H.263 MC residual into one of the several coding modes in H.264. The proposed approach reduces the H.264 MB mode computation process into a decision tree lookup with very low complexity. Experimental results show that the proposed approach reduces the inter-prediction complexity by as much as 60% while maintaining the coding efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信