带噪声数据的最大边际分类器:一种鲁棒优化方法

T. Trafalis, R. Gilbert
{"title":"带噪声数据的最大边际分类器:一种鲁棒优化方法","authors":"T. Trafalis, R. Gilbert","doi":"10.1109/IJCNN.2005.1556373","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the theoretical aspects of robust classification using support vector machines. Given training data (x/sub 1/,y/sub 1/),..., (x/sub l/y/sub l/), where l represents the number of samples, x/sub i/ /spl isin/ /spl Ropf//sup n/ and y/sub i/ /spl isin/ {-1,1}, we investigate the training of a support vector machine in the case where bounded perturbation is added to the value of the input x/sub i/ /spl isin/ /spl Ropf//sup n/. We consider both cases where our training data are either linearly separable or nonlinearly separable respectively. We show that we can perform robust classification by using linear or second order cone programming.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Maximum margin classifiers with noisy data: a robust optimization approach\",\"authors\":\"T. Trafalis, R. Gilbert\",\"doi\":\"10.1109/IJCNN.2005.1556373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the theoretical aspects of robust classification using support vector machines. Given training data (x/sub 1/,y/sub 1/),..., (x/sub l/y/sub l/), where l represents the number of samples, x/sub i/ /spl isin/ /spl Ropf//sup n/ and y/sub i/ /spl isin/ {-1,1}, we investigate the training of a support vector machine in the case where bounded perturbation is added to the value of the input x/sub i/ /spl isin/ /spl Ropf//sup n/. We consider both cases where our training data are either linearly separable or nonlinearly separable respectively. We show that we can perform robust classification by using linear or second order cone programming.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们研究了使用支持向量机的鲁棒分类的理论方面。给定训练数据(x/sub 1/,y/sub 1/),…, (x/sub l/y/sub l/),其中l表示样本数,x/sub i/ /spl isin/ /spl Ropf//sup n/和y/sub i/ /spl isin/{-1,1},我们研究了在输入值x/sub i/ /spl isin/ /spl Ropf//sup n/中添加有界扰动的情况下支持向量机的训练。我们分别考虑两种情况,即我们的训练数据是线性可分的或非线性可分的。我们证明了我们可以使用线性或二阶锥规划来进行鲁棒分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum margin classifiers with noisy data: a robust optimization approach
In this paper, we investigate the theoretical aspects of robust classification using support vector machines. Given training data (x/sub 1/,y/sub 1/),..., (x/sub l/y/sub l/), where l represents the number of samples, x/sub i/ /spl isin/ /spl Ropf//sup n/ and y/sub i/ /spl isin/ {-1,1}, we investigate the training of a support vector machine in the case where bounded perturbation is added to the value of the input x/sub i/ /spl isin/ /spl Ropf//sup n/. We consider both cases where our training data are either linearly separable or nonlinearly separable respectively. We show that we can perform robust classification by using linear or second order cone programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信